scispace - formally typeset
Search or ask a question
Author

Simon E. Jackson

Bio: Simon E. Jackson is an academic researcher from Geological Survey of Canada. The author has contributed to research in topics: Inductively coupled plasma mass spectrometry & Zircon. The author has an hindex of 42, co-authored 118 publications receiving 18730 citations. Previous affiliations of Simon E. Jackson include Macquarie University & Memorial University of Newfoundland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) was used for in situ U-Pb zircon geochronology.

4,092 citations

Journal ArticleDOI
TL;DR: In this article, the isotopic composition of Hf has been measured in 124 mantle-derived zircon megacrysts from African, Siberian and Australian kimberlites, using a laser-ablation microprobe (LAM) and a multi-collector ICPMS.

2,804 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a compilation of trace element data from approximately sixty published works for NIST SRM 611 and NISTSRM 613 and provide useful new working values for these reference materials.
Abstract: Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.

2,487 citations

Journal ArticleDOI
01 Apr 2002-Lithos
TL;DR: In this article, in-situ LAM-MC-ICPMS microanalysis shows large variations in 176Hf/177Hf (up to 15 eHf units) between zircons of different growth stages within a single rock, and between zones within single zircon grains, suggesting that each of the observed magmas in both complexes developed through hybridisation of ≥2 magmas with different sources.

2,292 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss data acquisition and reduction considerations in LA-ICP-MS analysis and suggest optimum data acquisition parameters for time-resolved data acquisition, sensitivity calibration is obtained from reference materials with known analyte concentrations and naturally occurring internal standards are used to correct for the multiplicative correction factors.
Abstract: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) produces complex, time-dependent signals. These require significantly different treatment both during data acquisition and reduction from the more steady-state signals produced by solution sample introduction. This paper discusses, in detail, data acquisition and reduction considerations in LA-ICP-MS analysis. Optimum data acquisition parameters are suggested. Equations are derived for the calculation of sample concentrations and LOD when time-resolved data acquisition is employed, sensitivity calibration is obtained from reference materials with known analyte concentrations and naturally occurring internal standards are used to correct for the multiplicative correction factors of drift, matrix effects and the amount of material ablated and transported to the ICP.

1,408 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) was used for in situ U-Pb zircon geochronology.

4,092 citations

Journal ArticleDOI
TL;DR: The importance of zircon in crustal evolution studies is underscored by its predominant use in U-Th-Pb geochronology and investigations of the temporal evolution of both the crust and lithospheric mantle as discussed by the authors.
Abstract: Zircon is the main mineral in the majority of igneous and metamorphic rocks with Zr as an essential structural constituent. It is a host for significant fractions of the whole-rock abundance of U, Th, Hf, and the REE (Sawka 1988, Bea 1996, O’Hara et al. 2001). These elements are important geochemically as process indicators or parent isotopes for age determination. The importance of zircon in crustal evolution studies is underscored by its predominant use in U-Th-Pb geochronology and investigations of the temporal evolution of both the crust and lithospheric mantle. In the past decade an increasing interest in the composition of zircon, trace-elements in particular, has been motivated by the effort to better constrain in situ microprobe-acquired isotopic ages. Electron-beam compositional imaging and isotope-ratio measurement by in situ beam techniques—and the micrometer-scale spatial resolution that is possible—has revealed in many cases that single zircon crystals contain a record of multiple geologic events. Such events can either be zircon-consuming, alteration, or zircon-forming and may be separated in time by millions or billions of years. In many cases, calculated zircon isotopic ages do not coincide with ages of geologic events determined from other minerals or from whole-rock analysis. To interpret the geologic validity and significance of multiple ages, and ages unsupported by independent analysis of other isotopic systems, has been the impetus for most past investigations of zircon composition. Some recent compositional investigations of zircon have not been directly related to geochronology, but to the ability of zircon to influence or record petrogenetic processes in igneous and metamorphic systems. Sedimentary rocks may also contain a significant fraction of zircon. Although authigenic zircon has been reported (Saxena 1966, Baruah et al. 1995, Hower et al. 1999), it appears to be very rare and may in fact be related to …

3,777 citations

Journal ArticleDOI
TL;DR: In this paper, an internal standard-independent calibration strategy for LA-ICP-MS analysis of anhydrous minerals and glasses was described, where the ablation yield correction factor (AYCF) was used to correct the matrix-dependent absolute amount of materials ablated during each run.

2,995 citations

Journal ArticleDOI
TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

2,995 citations