scispace - formally typeset
Search or ask a question
Author

Simon Finfer

Other affiliations: North Shore Hospital, Westmead Hospital, University of Toronto  ...read more
Bio: Simon Finfer is an academic researcher from The George Institute for Global Health. The author has contributed to research in topics: Intensive care & Intensive care unit. The author has an hindex of 62, co-authored 283 publications receiving 22057 citations. Previous affiliations of Simon Finfer include North Shore Hospital & Westmead Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: In patients in the ICU, there was no significant difference in 90-day mortality between patients resuscitated with 6% HES (130/0.4) or saline, however, more patients who received resuscitation with HES were treated with renal-replacement therapy.
Abstract: A total of 597 of 3315 patients (18.0%) in the HES group and 566 of 3336 (17.0%) in the saline group died (relative risk in the HES group, 1.06; 95% confidence interval [CI], 0.96 to 1.18; P = 0.26). There was no significant difference in mortality in six predefined subgroups. Renal-replacement therapy was used in 235 of 3352 patients (7.0%) in the HES group and 196 of 3375 (5.8%) in the saline group (relative risk, 1.21; 95% CI, 1.00 to 1.45; P = 0.04). In the HES and saline groups, renal injury occurred in 34.6% and 38.0% of patients, respectively (P = 0.005), and renal failure occurred in 10.4% and 9.2% of patients, respectively (P = 0.12). HES was associated with significantly more adverse events (5.3% vs. 2.8%, P<0.001). Conclusions In patients in the ICU, there was no significant difference in 90-day mortality between patients resuscitated with 6% HES (130/0.4) or saline. However, more patients who received resuscitation with HES were treated with renal-replacement therapy. (Funded by the National Health and Medical Research Council of Australia and others; CHEST ClinicalTrials.gov number, NCT00935168.)

1,372 citations

Journal ArticleDOI
TL;DR: The MET system greatly increases emergency team calling, but does not substantially affect the incidence of cardiac arrest, unplanned ICU admissions, or unexpected death.

1,229 citations

Journal ArticleDOI
TL;DR: In critically ill patients with acute kidney injury, treatment with higher-intensity continuous renal-replacement therapy did not reduce mortality at 90 days.
Abstract: Background The optimal intensity of continuous renal-replacement therapy remains unclear. We conducted a multicenter, randomized trial to compare the effect of this therapy, delivered at two different levels of intensity, on 90-day mortality among critically ill patients with acute kidney injury. Methods We randomly assigned critically ill adults with acute kidney injury to continuous renal-replacement therapy in the form of postdilution continuous venovenous hemodiafiltration with an effluent flow of either 40 ml per kilogram of body weight per hour (higher intensity) or 25 ml per kilogram per hour (lower intensity). The primary outcome measure was death within 90 days after randomization. Results Of the 1508 enrolled patients, 747 were randomly assigned to higher-intensity therapy, and 761 to lower-intensity therapy with continuous venovenous hemodiafiltration. Data on primary outcomes were available for 1464 patients (97.1%): 721 in the higher-intensity group and 743 in the lower-intensity group. The two study groups had similar baseline characteristics and received the study treatment for an average of 6.3 and 5.9 days, respectively (P = 0.35). At 90 days after randomization, 322 deaths had occurred in the higher-intensity group and 332 deaths in the lower-intensity group, for a mortality of 44.7% in each group (odds ratio, 1.00; 95% confidence interval [CI], 0.81 to 1.23; P = 0.99). At 90 days, 6.8% of survivors in the higher-intensity group (27 of 399), as compared with 4.4% of survivors in the lower-intensity group (18 of 411), were still receiving renal-replacement therapy (odds ratio, 1.59; 95% CI, 0.86 to 2.92; P = 0.14). Hypophosphatemia was more common in the higher-intensity group than in the lower-intensity group (65% vs. 54%, P Conclusions In critically ill patients with acute kidney injury, treatment with higher-intensity continuous renal-replacement therapy did not reduce mortality at 90 days. (ClinicalTrials.gov number, NCT00221013.)

1,199 citations

Journal ArticleDOI
TL;DR: DrotAA did not significantly reduce mortality at 28 or 90 days, as compared with placebo, in patients with septic shock, and rates of death at 28 and 90 days were not significantly different in other predefined subgroups, including patients at increased risk for death.
Abstract: A b s t r ac t Results At 28 days, 223 of 846 patients (26.4%) in the DrotAA group and 202 of 834 (24.2%) in the placebo group had died (relative risk in the DrotAA group, 1.09; 95% con - fidence interval (CI), 0.92 to 1.28; P = 0.31). At 90 days, 287 of 842 patients (34.1%) in the DrotAA group and 269 of 822 (32.7%) in the placebo group had died (relative risk, 1.04; 95% CI, 0.90 to 1.19; P = 0.56). Among patients with severe protein C deficiency at baseline, 98 of 342 (28.7%) in the DrotAA group had died at 28 days, as compared with 102 of 331 (30.8%) in the placebo group (risk ratio, 0.93; 95% CI, 0.74 to 1.17; P = 0.54). Similarly, rates of death at 28 and 90 days were not signifi - cantly different in other predefined subgroups, including patients at increased risk for death. Serious bleeding during the treatment period occurred in 10 patients in the DrotAA group and 8 in the placebo group (P = 0.81). Conclusions DrotAA did not significantly reduce mortality at 28 or 90 days, as compared with placebo, in patients with septic shock. (Funded by Eli Lilly; PROWESS-SHOCK ClinicalTrials.gov number, NCT00604214.)

1,123 citations


Cited by
More filters
Book
23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

21,235 citations

Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: Intensive insulin therapy to maintain blood glucose at or below 110 mg per deciliter reduces morbidity and mortality among critically ill patients in the surgical intensive care unit.
Abstract: Background Hyperglycemia and insulin resistance are common in critically ill patients, even if they have not previously had diabetes. Whether the normalization of blood glucose levels with insulin therapy improves the prognosis for such patients is not known. Methods We performed a prospective, randomized, controlled study involving adults admitted to our surgical intensive care unit who were receiving mechanical ventilation. On admission, patients were randomly assigned to receive intensive insulin therapy (maintenance of blood glucose at a level between 80 and 110 mg per deciliter) or conventional treatment (infusion of insulin only if the blood glucose level exceeded 215 mg per deciliter and maintenance of glucose at a level between 180 and 200 mg per deciliter). Results At 12 months, with a total of 1548 patients enrolled, intensive insulin therapy reduced mortality during intensive care from 8.0 percent with conventional treatment to 4.6 percent (P<0.04, with adjustment for sequential analyses). The ...

8,748 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations