scispace - formally typeset
Search or ask a question
Author

Simon Gross

Bio: Simon Gross is an academic researcher from Macquarie University. The author has contributed to research in topics: Laser & Interferometry. The author has an hindex of 31, co-authored 190 publications receiving 2950 citations. Previous affiliations of Simon Gross include National Institutes of Natural Sciences, Japan & Centre for Ultrahigh Bandwidth Devices for Optical Systems.


Papers
More filters
Journal ArticleDOI
TL;DR: The femtosecond laser direct-writing of waveguide circuits in glasses is among the few integrated optical platforms to have produced individually every component required for scalable quantum computation.
Abstract: The femtosecond laser direct-writing (FLDW) of waveguide circuits in glasses has seen interest from a number of fields over the previous 20 years. It has evolved from a curiosity to a viable platform for the rapid prototyping of small scale circuits. The field of quantum information science has exploited this capability and in the process advanced the fabrication technique. In this review the technological aspects of the laser inscription method relevant to quantum information science will be discussed. A range of demonstrations which have been enabled by laser written circuits will be outlined; these include novel circuits, simulations, photon sources and detection. This places the FLDW technique among the few integrated optical platforms to have produced individually every component required for scalable quantum computation.

195 citations

Journal ArticleDOI
TL;DR: The 2.94 μm Er:YAG laser Q-switched mechanically by a rotating mirror was developed in this article, which can generate pulses of 30 mJ energy and duration below 290 ns, which corresponds to over 100 kW peak power.
Abstract: The 2.94 μm Er:YAG laser Q-switched mechanically by a rotating mirror was developed. The laser generated pulses of 30 mJ energy and duration below 290 ns, which corresponds to over 100 kW peak power. It operated at the repetition rate of up to 25 Hz. To our knowledge it is the most powerful erbium laser operating at so high repetition rate. The developed laser can be successfully applied in medicine – e.g. in microsurgery of soft biological tissues.

192 citations

Journal ArticleDOI
TL;DR: This procedure was used to fabricate an efficient 3D, photonic device known as a "pupil-remapper" with negligible bend losses for the first time, and will also allow for complex chips, based on 10's - 100's of waveguides to be realized in a compact foot print with short fabrication times.
Abstract: We present a novel method to fabricate low bend loss femtosecond-laser written waveguides that exploits the differential thermal stabilities of laser induced refractive index modifications. The technique consists of a two-step process; the first involves fabricating large multimode waveguides, while the second step consists of a thermal post-annealing process, which erases the outer ring of the refractive index profile, enabling single mode operation in the C-band. By using this procedure we report waveguides with sharp bends (down to 16.6 mm radius) and high (80%) normalized throughputs. This procedure was used to fabricate an efficient 3D, photonic device known as a “pupil-remapper” with negligible bend losses for the first time. The process will also allow for complex chips, based on 10's - 100's of waveguides to be realized in a compact foot print with short fabrication times.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription are reviewed as well as the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.
Abstract: Abstract Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

141 citations

Journal ArticleDOI
TL;DR: A 790 nm pumped, Tm³⁺ doped ZBLAN glass buried waveguide laser that produces 47 mW at 1880 nm, with a 50% internal slope efficiency and an M² of 1.7 is reported, which is the most efficient laser created in a glass host via femtosecond waveguide writing.
Abstract: We report a 790 nm pumped, Tm³⁺ doped ZBLAN glass buried waveguide laser that produces 47 mW at 1880 nm, with a 50% internal slope efficiency and an M² of 1.7. The waveguide cladding is defined by two overlapping rings created by femtosecond direct-writing of the glass, which results in the formation of a tubular depressed-index-cladding structure, and the laser resonator is defined by external dielectric mirrors. This is, to the best of our knowledge, the most efficient laser created in a glass host via femtosecond waveguide writing.

135 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: In this article, a five-mode integrated interferometer containing three-dimensional S-bent waveguides was used to sample three single photons and the probability ratios of all events were measured.
Abstract: The boson-sampling problem was demonstrated by studying three-photon interference in a five-mode integrated interferometer containing three-dimensional S-bent waveguides. Three single photons were input into the interferometer and the probability ratios of all events were measured. The results agree with quantum mechanical predictions for three-photon interference.

668 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically characterized the nonlinear optical response of MXene Ti3C2Tx nanosheets over the spectral range of 800 nm to 1800 nm, and they demonstrated the efficient broadband light signal manipulating capabilities of the large MXene family.
Abstract: Studies of the nonlinear optical phenomena that describe the light-matter interactions in 2D crystalline materials have promoted a diverse range of photonic applications. MXene, as a recently developed new 2D material, has attracted considerable attention because of its graphene-like but highly tunable and tailorable electronic/optical properties. In this study, we systematically characterize the nonlinear optical response of MXene Ti3C2Tx nanosheets over the spectral range of 800 nm to 1800 nm. A large effective nonlinear absorption coefficient (βeff∼-10−21 m2/V2) due to saturable absorption is observed for all of the testing wavelengths. The contribution of saturable absorption is two orders of magnitude higher than other lossy nonlinear absorption processes, and the amplitude of βeff strongly depends on the light bleaching level. A negative nonlinear refractive index (n2∼-10−20 m2/W) with value comparable to that of the intensively studied graphene was demonstrated for the first time. These results demonstrate the efficient broadband light signal manipulating capabilities of Ti3C2Tx, which is only one member of the large MXene family. The capability of an efficient broadband optical switch is strongly confirmed using Ti3C2Tx as saturable absorbers for mode-locking operation at 1066 nm and 1555 nm, respectively. A highly stable femtosecond laser with pulse duration as short as 159 fs in the telecommunication window is readily obtained. Considering the diversity of the MXene family, this study may open a new avenue to advanced photonic devices.

628 citations

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

621 citations