scispace - formally typeset
Search or ask a question
Author

Simon J. Gaskell

Bio: Simon J. Gaskell is an academic researcher from University of Manchester. The author has contributed to research in topics: Mass spectrometry & Proteome. The author has an hindex of 50, co-authored 150 publications receiving 13666 citations. Previous affiliations of Simon J. Gaskell include Queen Mary University of London & University of Nottingham.


Papers
More filters
Journal ArticleDOI
20 Apr 2001-Science
TL;DR: It is shown that the interaction between human pVHL and a specific domain of the HIF-1α subunit is regulated through hydroxylation of a proline residue by an enzyme the authors have termed Hif-α prolyl-hydroxylase (HIF-PH).
Abstract: Hypoxia-inducible factor (HIF) is a transcriptional complex that plays a central role in the regulation of gene expression by oxygen. In oxygenated and iron replete cells, HIF-alpha subunits are rapidly destroyed by a mechanism that involves ubiquitylation by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. Here we show that the interaction between human pVHL and a specific domain of the HIF-1alpha subunit is regulated through hydroxylation of a proline residue (HIF-1alpha P564) by an enzyme we have termed HIF-alpha prolyl-hydroxylase (HIF-PH). An absolute requirement for dioxygen as a cosubstrate and iron as cofactor suggests that HIF-PH functions directly as a cellular oxygen sensor.

5,186 citations

Journal ArticleDOI
TL;DR: The basic principles underlying the electrospray process are reviewed without recourse to detailed discussion of mechanisms as mentioned in this paper, and the essential features of the practical implementation of electrosplay (at various solution flow rates) are described and the nature of the resultant gas-phase ion population is discussed.
Abstract: The basic principles underlying the electrospray process are reviewed without recourse to detailed discussion of mechanisms. The essential features of the practical implementation of electrospray (at various solution flow rates) are described and the nature of the resultant gas-phase ion population is discussed. The generation by electrospray of multiply charged ions creates complications in that spectral complexity is increased and the determination of charge number must precede the measurement of mass. Multiple charging is beneficial, however, in extending the mass range and improving fragmentation yield in tandem mass spectrometry. The current breadth of application of the technique (including the analysis of non-covalently bound species) and future developments are discussed. © 1997 by John Wiley & Sons, Ltd.

633 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: It is shown that RNAi-mediated ablation of various proteins identified in the trypanosome flagellar proteome leads to a rapid and marked failure of cytokinesis in bloodstream-form (but not procyclic insect-form)trypanosomes, suggesting that impairment of flageLLar function may provide a method of disease control.
Abstract: There is little hope for a vaccine for African sleeping sickness, and most of the drugs currently used to treat it are old, not particularly effective and difficult to use in the conditions that prevail in sub-Saharan Africa, where the disease is endemic. So the discovery of a new class of molecule that might be targeted by drug intervention could be an important boost to the field. The sleeping sickness parasite Trypanosoma brucei is a protozoon equipped with a whip-like flagellum. RNA interference (RNAi) knock-down experiments show that a functioning flagellum is essential for Trypanosoma's survival in the bloodstream. That makes the flagellum a possible point of therapeutic attack, and proteomic analysis points to a number of trypanosome-specific flagellar proteins that could be targeted. On the cover, monstrous cells of bloodstream-form trypanosomes formed by a failure of cell division in cells with defective flagella. The 9 + 2 microtubule axoneme of flagella and cilia represents one of the most iconic structures built by eukaryotic cells and organisms. Both unity and diversity are present among cilia and flagella on the evolutionary as well as the developmental scale. Some cilia are motile, whereas others function as sensory organelles and can variously possess 9 + 2 and 9 + 0 axonemes and other associated structures1. How such unity and diversity are reflected in molecular repertoires is unclear. The flagellated protozoan parasite Trypanosoma brucei is endemic in sub-Saharan Africa, causing devastating disease in humans and other animals2. There is little hope of a vaccine for African sleeping sickness and a desperate need for modern drug therapies3. Here we present a detailed proteomic analysis of the trypanosome flagellum. RNA interference (RNAi)-based interrogation of this proteome provides functional insights into human ciliary diseases and establishes that flagellar function is essential to the bloodstream-form trypanosome. We show that RNAi-mediated ablation of various proteins identified in the trypanosome flagellar proteome leads to a rapid and marked failure of cytokinesis in bloodstream-form (but not procyclic insect-form) trypanosomes, suggesting that impairment of flagellar function may provide a method of disease control. A postgenomic meta-analysis, comparing the evolutionarily ancient trypanosome with other eukaryotes including humans, identifies numerous trypanosome-specific flagellar proteins, suggesting new avenues for selective intervention.

494 citations

Journal ArticleDOI
TL;DR: The successful design and construction of an artificial gene encoding a concatenation of tryptic peptides (QCAT protein) from several chick skeletal muscle proteins and features for quantification and purification are reported.
Abstract: Absolute quantification in proteomics usually involves simultaneous determination of representative proteolytic peptides and stable isotope–labeled analogs. The principal limitation to widespread implementation of this approach is the availability of standard signature peptides in accurately known amounts. We report the successful design and construction of an artificial gene encoding a concatenation of tryptic peptides (QCAT protein) from several chick (Gallus gallus) skeletal muscle proteins and features for quantification and purification.

474 citations

Journal ArticleDOI
TL;DR: Stable isotope-labeled amino acids can be used to define the rate of breakdown of individual proteins by inspection of mass shifts in tryptic fragments and this approach has been applied to an analysis of abundant proteins in glucose-limited yeast cells grown in aerobic chemostat culture at steady state.

409 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Abstract: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.

6,024 citations

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Using a quantitative model, the first genome-scale prediction of synthesis rates of mRNAs and proteins is obtained and it is found that the cellular abundance of proteins is predominantly controlled at the level of translation.
Abstract: Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.

5,635 citations

Journal ArticleDOI
TL;DR: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death, and many elements of the hypoxia-response pathway are good candidates for therapeutic targeting.
Abstract: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death. Cancer cells have adapted these pathways, allowing tumours to survive and even grow under hypoxic conditions, and tumour hypoxia is associated with poor prognosis and resistance to radiation therapy. Many elements of the hypoxia-response pathway are therefore good candidates for therapeutic targeting.

4,847 citations

Journal ArticleDOI
20 Apr 2001-Science
TL;DR: It is found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated, which may play a key role in mammalian oxygen sensing.
Abstract: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.

4,480 citations

Journal ArticleDOI
TL;DR: It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease.
Abstract: Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, conside...

3,990 citations