scispace - formally typeset
Search or ask a question
Author

Simon J. Judd

Bio: Simon J. Judd is an academic researcher from Cranfield University. The author has contributed to research in topics: Fouling & Membrane bioreactor. The author has an hindex of 58, co-authored 208 publications receiving 13327 citations. Previous affiliations of Simon J. Judd include University of Bedfordshire & Edith Cowan University.


Papers
More filters
Book
01 Jan 2006
TL;DR: The second edition of the MBR Book as mentioned in this paper provides more content than the first edition, with more than 120 contributors from the academic research and municipal/industrial practitioner communities, covering all important aspects of Membrane BioReactors in water and waste water treatment.
Abstract: A Membrane BioReactor (MBR) is the combination of a membrane process (e.g. microfiltration/ ultrafiltration) with a suspended growth bioreactor. When used with domestic wastewater, MBR processes can produce effluent of high enough quality to be discharged to waterways, or to be reclaimed for urban irrigation. Other advantages of MBRs over conventional processes include small footprint, easy retrofit and upgrade of old wastewater treatment plants. The MBR Book covers all important aspects of Membrane BioReactors in water and waste water treatment, from the fundamentals of the processes via design principles to MBR technologies. Industrial case studies help interpret actual results and give pointers for best practice. Useful appendices provide data on commercial membranes and international membrane organizations. The MBR book enables readers to: Understand the fundamental processes involved in membrane and biotreatment technologies Compare and contrast design options and work through sample calculations Review commercial MBR systems in terms of specific applications Learn from case studies involving domestic and industrial effluent treatment and recycling Analyze process design, operation, performance and maintenance to draw conclusions appropriate to their requirements New to the second edition: 45% more content than the first edition. Over 120 contributors from the academic research and municipal/industrial practitioner communities. Review of MBR status in ten countries. Expanded section on anaerobic MBRs, micropollutant fate and hybrid systems. Simplified design methodology, with biokinetics for dynamic modelling and cost benefit analysis. Expanded operation and maintenance section, informed by expert panel of practitioners offering more than 40 years combined experience. Over 40 MBR membrane products described, with most of the technical specifications provided. Over 50 case studies provided, including key design, performance, and operation and maintenance data in almost all cases. Membrane Bioreactors are a major growth area in the water and waste water treatment industries Internationally-known author, one of the leading senior experts in MBR research Principles and practice, backed by industrial case studies

1,278 citations

Journal ArticleDOI
TL;DR: Establishing a general model to describe membrane fouling in such a process is made extremely difficult by the inherent heterogeneity of the biomass matrix, which is highly heterogeneous and includes living microorganisms.
Abstract: Membrane bioreactors (MBRs), in which membranes are applied to biological wastewater treatment for biomass separation, provide many advantages over conventional treatment. However, membrane fouling in MBRs restricts their widespread application because it reduces productivity and increases maintenance and operating costs. Recently much research and development has taken place to investigate, model, and control membrane fouling processes. However, unified and well-structured theories on membrane fouling are not currently available because of the complexity of the biomass matrix, which is highly heterogeneous and includes living microorganisms. Membrane fouling in MBR systems can be reversible (i.e., removable by physical washing) or irreversible (removable by chemical cleaning only), and can take place on the membrane surface or into the membrane pores. Although establishing a general model to describe membrane fouling in such a process is made extremely difficult by the inherent heterogeneity of the syste...

714 citations

Journal ArticleDOI
TL;DR: Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.

563 citations

Journal ArticleDOI
TL;DR: In this paper, the authors cover the subject of membrane bioreactors (MBR) for wastewater treatment, dealing with municipal as well as industrial wastewaters, and discuss the science behind the technology, their design features, operation, applications, advantages, limitations, performance, current research activities and cost.
Abstract: The book covers the subject of membrane bioreactors (MBR) for wastewater treatment, dealing with municipal as well as industrial wastewaters. The book details the 3 types of MBR available and discusses the science behind the technology, their design features, operation, applications, advantages, limitations, performance, current research activities and cost. As the demand for wastewater treatment, recycling and re-use technologies increases, it is envisaged that the membrane separation bioreactor will corner the market. This title belongs to WERF Research Report Series ISBN: 9781900222075 (Print) ISBN: 9781780402147 (eBook)

517 citations

Journal ArticleDOI
TL;DR: In this article, a standard flux-step method has been developed for assessing fouling in a membrane bioreactor operating at constant flux, and three parameters based on transmembrane pressure (TMP) were derived to depict fouling behaviour and identify the onset of fouling at the so-called critical flux.

515 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.

3,692 citations

Journal ArticleDOI
TL;DR: This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water.

2,933 citations

Journal ArticleDOI
TL;DR: In this paper, a review of more than 300 publications on membrane bioreactor fouling is presented, and the authors propose updated definitions of key parameters such as critical and sustainable flux, along with standard methods to determine and measure the different fractions of the biomass.

2,113 citations