scispace - formally typeset
Search or ask a question
Author

Simon L. Parsons

Bio: Simon L. Parsons is an academic researcher from Nottingham University Hospitals NHS Trust. The author has contributed to research in topics: Medicine & Catumaxomab. The author has an hindex of 31, co-authored 93 publications receiving 5261 citations. Previous affiliations of Simon L. Parsons include University of Nottingham & Queen's University.


Papers
More filters
Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations

Journal ArticleDOI
01 Jan 2014-Gut
TL;DR: These guidelines provide a practical and evidence-based resource for the management of patients with Barrett's oesophagus and related early neoplasia and suggested stratification of patients according to their estimated cancer risk based on clinical and histopathological criteria for the first time.
Abstract: These guidelines provide a practical and evidence-based resource for the management of patients with Barrett's oesophagus and related early neoplasia. The Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument was followed to provide a methodological strategy for the guideline development. A systematic review of the literature was performed for English language articles published up until December 2012 in order to address controversial issues in Barrett's oesophagus including definition, screening and diagnosis, surveillance, pathological grading for dysplasia, management of dysplasia, and early cancer including training requirements. The rigour and quality of the studies was evaluated using the SIGN checklist system. Recommendations on each topic were scored by each author using a five-tier system (A+, strong agreement, to D+, strongly disagree). Statements that failed to reach substantial agreement among authors, defined as >80% agreement (A or A+), were revisited and modified until substantial agreement (>80%) was reached. In formulating these guidelines, we took into consideration benefits and risks for the population and national health system, as well as patient perspectives. For the first time, we have suggested stratification of patients according to their estimated cancer risk based on clinical and histopathological criteria. In order to improve communication between clinicians, we recommend the use of minimum datasets for reporting endoscopic and pathological findings. We advocate endoscopic therapy for high-grade dysplasia and early cancer, which should be performed in high-volume centres. We hope that these guidelines will standardise and improve management for patients with Barrett's oesophagus and related neoplasia.

1,083 citations

Journal ArticleDOI
TL;DR: Catumaxomab showed a clear clinical benefit in patients with malignant ascites secondary to epithelial cancers, especially gastric cancer, with an acceptable safety profile.
Abstract: Malignant ascites is a common manifestation of advanced cancers, and treatment options are limited. The trifunctional antibody catumaxomab (anti-epithelial cell-adhesion molecule x anti-CD3) represents a targeted immunotherapy for the intraperitoneal (i.p.) treatment of malignant ascites secondary to epithelial cancers. In this phase II/III trial (EudraCT 2004-000723-15; NCT00836654), cancer patients (n = 258) with recurrent symptomatic malignant ascites resistant to conventional chemotherapy were randomized to paracentesis plus catumaxomab (catumaxomab) or paracentesis alone (control) and stratified by cancer type (129 ovarian and 129 nonovarian). Catumaxomab was administered as an i.p. infusion on Days 0, 3, 7 and 10 at doses of 10, 20, 50 and 150 μg, respectively. The primary efficacy endpoint was puncture-free survival. Secondary efficacy parameters included time to next paracentesis, ascites signs and symptoms and overall survival (OS). Puncture-free survival was significantly longer in the catumaxomab group (median 46 days) than the control group (median 11 days) (hazard ratio = 0.254: p < 0.0001) as was median time to next paracentesis (77 versus 13 days; p < 0.0001). In addition, catumaxomab patients had fewer signs and symptoms of ascites than control patients. OS showed a positive trend for the catumaxomab group and, in a prospectively planned analysis, was significantly prolonged in patients with gastric cancer (n = 66; 71 versus 44 days; p = 0.0313). Although adverse events associated with catumaxomab were frequent, they were manageable, generally reversible and mainly related to its immunologic mode of action. Catumaxomab showed a clear clinical benefit in patients with malignant ascites secondary to epithelial cancers, especially gastric cancer, with an acceptable safety profile.

474 citations

Journal ArticleDOI
TL;DR: The identified independent prognostic factors for survival were cancer type, liver metastases and serum albumin, which should be used to select patients for multimodality therapy for adequate palliation.

281 citations

Journal ArticleDOI
TL;DR: NAC was associated with further reductions in FFM and an increase in the proportion of patients becoming sarcopenic, and no association was demonstrated between loss ofFFM and non-completion of NAC, increased hospital stay or mortality.

222 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.
Abstract: The use of monoclonal antibodies (mAbs) for cancer therapy has achieved considerable success in recent years. Antibody-drug conjugates are powerful new treatment options for lymphomas and solid tumours, and immunomodulatory antibodies have also recently achieved remarkable clinical success. The development of therapeutic antibodies requires a deep understanding of cancer serology, protein-engineering techniques, mechanisms of action and resistance, and the interplay between the immune system and cancer cells. This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.

1,788 citations

Journal ArticleDOI
TL;DR: Xena’s Visual Spreadsheet visualization integrates gene-centric and genomic-coordinate-centric views across multiple data modalities, providing a deep, comprehensive view of genomic events within a cohort of tumors.
Abstract: To the Editor — There is a great need for easy-to-use cancer genomics visualization tools for both large public data resources such as TCGA (The Cancer Genome Atlas)1 and the GDC (Genomic Data Commons)2, as well as smaller-scale datasets generated by individual labs. Commonly used interactive visualization tools are either web-based portals or desktop applications. Data portals have a dedicated back end and are a powerful means of viewing centrally hosted resource datasets (for example, Xena’s predecessor, the University of California, Santa Cruz (UCSC) Cancer Browser (currently retired3), cBioPortal4, ICGC (International Cancer Genomics Consortium) Data Portal5, GDC Data Portal2). However, researchers wishing to use a data portal to explore their own data have to either redeploy the entire platform, a difficult task even for bioinformaticians, or upload private data to a server outside the user’s control, a non-starter for protected patient data, such as germline variants (for example, MAGI (Mutation Annotation and Genome Interpretation6), WebMeV7 or Ordino8). Desktop tools can view a user’s own data securely (for example, Integrated Genomics Viewer (IGV)9, Gitools10), but lack well-maintained, prebuilt files for the ever-evolving and expanding public data resources. This dichotomy between data portals and desktop tools highlights the challenge of using a single platform for both large public data and smaller-scale datasets generated by individual labs. Complicating this dichotomy is the expanding amount, and complexity, of cancer genomics data resulting from numerous technological advances, including lower-cost high-throughput sequencing and single-cell-based technologies. Cancer genomics datasets are now being generated using new assays, such as whole-genome sequencing11, DNA methylation whole-genome bisulfite sequencing12 and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing13). Visualizing and exploring these diverse data modalities is important but challenging, especially as many tools have traditionally specialized in only one or perhaps a few data types. And although these complex datasets generate insights individually, integration with other omics datasets is crucial to help researchers discover and validate findings. UCSC Xena was developed as a high-performance visualization and analysis tool for both large public repositories and private datasets. It was built to scale with the current and future data growth and complexity. Xena’s privacy-aware architecture enables cancer researchers of all computational backgrounds to explore large, diverse datasets. Researchers use the same system to securely explore their own data, together or separately from the public data, all the while keeping private data secure. The system easily supports many tens of thousands of samples and has been tested with up to a million cells. The simple and flexible architecture supports a variety of common and uncommon data types. Xena’s Visual Spreadsheet visualization integrates gene-centric and genomic-coordinate-centric views across multiple data modalities, providing a deep, comprehensive view of genomic events within a cohort of tumors. UCSC Xena (http://xena.ucsc.edu) has two components: the front end Xena Browser and the back end Xena Hubs (Fig. 1). The web-based Xena Browser empowers biologists to explore data across multiple Xena Hubs with a variety of visualizations and analyses. The back end Xena Hubs host genomics data from laptops, public servers, behind a firewall, or in the cloud, and can be public or private (Supplementary Fig. 1). The Xena Browser receives data simultaneously from multiple Xena Hubs and integrates them into a single coherent visualization within the browser. A private Xena Hub is a hub installed on a user’s own computer (Supplementary Fig. 2). It is configured to only respond to requests from the computer’s localhost network interface (that is, http://127.0.0.1). This ensures that the hub only communicates with the computer on which the hub is installed. A public hub is configured to respond to requests from external computers. There are two types of public Xena Hubs (Supplementary Fig. 2). The first type is an open-public hub, which is a public hub accessible by everyone. While we host several open-public hubs (Supplementary Table 1), users can also set up their own as a way to share data. An example of one is the Treehouse Hub set up by the Childhood Cancer Initiative to share pediatric cancer RNA-seq gene expression data (Supplementary Note). The second type W eb s er ve r

1,644 citations

Journal ArticleDOI
05 Feb 2020-Nature
TL;DR: The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet- base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.
Abstract: Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3–15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated—but distinct—DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer. The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

1,521 citations