scispace - formally typeset

Author

Simon Maskell

Bio: Simon Maskell is an academic researcher from University of Liverpool. The author has contributed to research in topic(s): Particle filter & Kalman filter. The author has an hindex of 27, co-authored 128 publication(s) receiving 14367 citation(s). Previous affiliations of Simon Maskell include Qinetiq & University of Cambridge.
Papers
More filters

Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

10,977 citations


Proceedings ArticleDOI
Simon Maskell1, Neil GordonInstitutions (1)
01 Jan 2001
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or “particle”) representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

967 citations


Journal ArticleDOI
TL;DR: A generalised two-filter smoothing formula is proposed which only requires approximating probability distributions and applies to any state–space model, removing the need to make restrictive assumptions used in previous approaches to this problem.
Abstract: Two-filter smoothing is a principled approach for performing optimal smoothing in non-linear non-Gaussian state-space models where the smoothing dis- tributions are computed through the combination of 'forward' and 'backward' time filters. The 'forward' filter is the standard Bayesian filter but the 'backward' filter, generally referred to as the backward information filter, is not a probability measure on the space of the hidden Markov process. In cases where the backward information filter can be computed in closed form, this technical point is not important. However, forgeneralstate-spacemodelswherethereisnoclosedformexpression,thisprohibits the use of flexible numerical techniques such as Sequential Monte Carlo (SMC) to approximate the two-filter smoothing formula. We propose here a generalised two- filter smoothing formula which only requires approximating probability distributions and applies to any state-space model, removing the need to make restrictive assump- tions used in previous approaches to this problem. SMC algorithms are developed to implement this generalised recursion and we illustrate their performance on various problems.

316 citations


Proceedings ArticleDOI
Abstract: It is common practice to represent a target group (or an extended target) as set of point sources and attempt to formulate a tracking filter by constructing possible assignments between measurements and the sources. We suggest an alternative approach that produces a measurement model (likelihood) in terms of the spatial density of measurements over the sensor observation region. In particular, the measurements are modelled as a Poisson process with a spatially dependent rate parameter. This representation allows us to model extended targets as an intensity distribution rather than a set of points and, for a target formation, it gives the option of modelling part of the group as a spatial distribution of target density. Furthermore, as a direct consequence of the Poisson model, the measurement likelihood may be evaluated without constructing explicit association hypotheses. This considerably simplifies the filter and gives a substantial computational saving in a particle filter implementation. The Poisson target-measurement model will be described and its relationship to other filters will be discussed. Illustrative simulation examples will be presented.

268 citations


Proceedings ArticleDOI
Mike Klaas1, Mark Briers2, Nando de Freitas1, Arnaud Doucet1  +2 moreInstitutions (4)
25 Jun 2006
TL;DR: This work proposes efficient particle smoothing methods for generalized state-spaces models by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother.
Abstract: We propose efficient particle smoothing methods for generalized state-spaces models. Particle smoothing is an expensive O(N2) algorithm, where N is the number of particles. We overcome this problem by integrating dual tree recursions and fast multipole techniques with forward-backward smoothers, a new generalized two-filter smoother and a maximum a posteriori (MAP) smoother. Our experiments show that these improvements can substantially increase the practicality of particle smoothing.

176 citations


Cited by
More filters

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

7,045 citations


MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

5,623 citations


Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,901 citations


Posted Content
Andrew Harvey1Institutions (1)
Abstract: In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.

4,252 citations


Proceedings ArticleDOI
26 Apr 2010
TL;DR: This paper investigates the real-time interaction of events such as earthquakes in Twitter and proposes an algorithm to monitor tweets and to detect a target event and produces a probabilistic spatiotemporal model for the target event that can find the center and the trajectory of the event location.
Abstract: Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its real-time nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence promptly, simply by observing the tweets. As described in this paper, we investigate the real-time interaction of events such as earthquakes in Twitter and propose an algorithm to monitor tweets and to detect a target event. To detect a target event, we devise a classifier of tweets based on features such as the keywords in a tweet, the number of words, and their context. Subsequently, we produce a probabilistic spatiotemporal model for the target event that can find the center and the trajectory of the event location. We consider each Twitter user as a sensor and apply Kalman filtering and particle filtering, which are widely used for location estimation in ubiquitous/pervasive computing. The particle filter works better than other comparable methods for estimating the centers of earthquakes and the trajectories of typhoons. As an application, we construct an earthquake reporting system in Japan. Because of the numerous earthquakes and the large number of Twitter users throughout the country, we can detect an earthquake with high probability (96% of earthquakes of Japan Meteorological Agency (JMA) seismic intensity scale 3 or more are detected) merely by monitoring tweets. Our system detects earthquakes promptly and sends e-mails to registered users. Notification is delivered much faster than the announcements that are broadcast by the JMA.

3,811 citations


Network Information
Related Authors (5)
Arnaud Doucet

386 papers, 43.3K citations

66% related
Simon J. Godsill

394 papers, 16K citations

64% related
Amadou Gning

51 papers, 1K citations

60% related
Mark Rutten

41 papers, 1.3K citations

56% related
Lyudmila Mihaylova

299 papers, 4K citations

55% related
Performance
Metrics

Author's H-index: 27

No. of papers from the Author in previous years
YearPapers
20221
202110
202015
201911
201811
201710