scispace - formally typeset
Author

Simon Schroeder

Bio: Simon Schroeder is a academic researcher at Charité who has co-authored 11 publication(s) receiving 10588 citation(s). The author has an hindex of 8. Previous affiliations of Simon Schroeder include University of Bonn & Humboldt University of Berlin. The author has done significant research in the topic(s): Virus & Middle East respiratory syndrome coronavirus.

...read more

Papers
  More

Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.02.052
16 Apr 2020-Cell
Abstract: The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.

...read more

Topics: Proteases (52%)

10,193 Citations


Open accessJournal ArticleDOI: 10.1128/AAC.00754-20
Abstract: The currently unfolding coronavirus pandemic threatens health systems and economies worldwide.….

...read more

Topics: Coronavirus (64%), Betacoronavirus (53%), Nafamostat (52%)

245 Citations


Open accessJournal ArticleDOI: 10.1080/22221751.2020.1713705
Abstract: Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) causes a severe respiratory disease in humans. The MERS-CoV spike (S) glycoprotein mediates viral entry into target cells. For this, MERS-CoV S engages the host cell protein dipeptidyl peptidase 4 (DPP4, CD26) and the interface between MERS-CoV S and DPP4 has been resolved on the atomic level. Here, we asked whether naturally-occurring polymorphisms in DPP4, that alter amino acid residues required for MERS-CoV S binding, influence cellular entry of MERS-CoV. By screening of public databases, we identified fourteen such polymorphisms. Introduction of the respective mutations into DPP4 revealed that all except one (Δ346-348) were compatible with robust DPP4 expression. Four polymorphisms (K267E, K267N, A291P and Δ346-348) strongly reduced binding of MERS-CoV S to DPP4 and S protein-driven host cell entry, as determined using soluble S protein and S protein bearing rhabdoviral vectors, respectively. Two polymorphisms (K267E and A291P) were analyzed in the context of authentic MERS-CoV and were found to attenuate viral replication. Collectively, we identified naturally-occurring polymorphisms in DPP4 that negatively impact cellular entry of MERS-CoV and might thus modulate MERS development in infected patients.

...read more

Topics: Viral entry (57%), Coronavirus (57%), Dipeptidyl peptidase-4 (53%) ...read more

59 Citations


Open accessJournal ArticleDOI: 10.1038/S41467-021-24007-W
Nils C. Gassen1, Jan Papies2, Jan Papies3, Thomas Bajaj1  +45 moreInstitutions (11)
Abstract: Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19. Viruses manipulate host cell pathways to support infection. Here the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.

...read more

Topics: BECN1 (68%), Autophagy (60%)

25 Citations


Open accessJournal ArticleDOI: 10.1073/PNAS.2006750117
Sofia Paraskevopoulou1, Fabian Pirzer1, Nora Goldmann2, Julian Schmid3  +19 moreInstitutions (5)
Abstract: Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus. The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.

...read more

Topics: Satellite virus (66%), Helper virus (63%), RNA virus (59%) ...read more

19 Citations


Cited by
  More

Open accessJournal ArticleDOI: 10.1038/S41586-020-2196-X
Roman Wölfel1, Victor M. Corman2, Wolfgang Guggemos, M Seilmaier  +15 moreInstitutions (4)
01 Apr 2020-Nature
Abstract: Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity—but also aided in the control—of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6–8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples—in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19. Detailed virological analysis of nine cases of coronavirus disease 2019 (COVID-19) provides proof of active replication of the SARS-CoV-2 virus in tissues of the upper respiratory tract.

...read more

Topics: Virus receptor (62%), Coronavirus (60%), Viral shedding (59%) ...read more

4,325 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-020-2180-5
Jun Lan1, Jiwan Ge1, Jinfang Yu1, Sisi Shan1  +7 moreInstitutions (2)
30 Mar 2020-Nature
Abstract: A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1–3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1–3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies. High-resolution crystal structures of the receptor-binding domain of the spike protein of SARS-CoV-2 and SARS-CoV in complex with ACE2 provide insights into the binding mode of these coronaviruses and highlight essential ACE2-interacting residues.

...read more

Topics: Protein domain (51%)

2,729 Citations


Open accessJournal ArticleDOI: 10.1016/S2215-0366(20)30168-1
Emily A. Holmes1, Emily A. Holmes2, Rory C. O'Connor3, V. Hugh Perry4  +22 moreInstitutions (17)
Abstract: The coronavirus disease 2019 (COVID-19) pandemic is having a profound effect on all aspects of society, including mental health and physical health. We explore the psychological, social, and neuroscientific effects of COVID-19 and set out the immediate priorities and longer-term strategies for mental health science research. These priorities were informed by surveys of the public and an expert panel convened by the UK Academy of Medical Sciences and the mental health research charity, MQ: Transforming Mental Health, in the first weeks of the pandemic in the UK in March, 2020. We urge UK research funding agencies to work with researchers, people with lived experience, and others to establish a high level coordination group to ensure that these research priorities are addressed, and to allow new ones to be identified over time. The need to maintain high-quality research standards is imperative. International collaboration and a global perspective will be beneficial. An immediate priority is collecting high-quality data on the mental health effects of the COVID-19 pandemic across the whole population and vulnerable groups, and on brain function, cognition, and mental health of patients with COVID-19. There is an urgent need for research to address how mental health consequences for vulnerable groups can be mitigated under pandemic conditions, and on the impact of repeated media consumption and health messaging around COVID-19. Discovery, evaluation, and refinement of mechanistically driven interventions to address the psychological, social, and neuroscientific aspects of the pandemic are required. Rising to this challenge will require integration across disciplines and sectors, and should be done together with people with lived experience. New funding will be required to meet these priorities, and it can be efficiently leveraged by the UK's world-leading infrastructure. This Position Paper provides a strategy that may be both adapted for, and integrated with, research efforts in other countries.

...read more

Topics: Mental health (60%), Psychological intervention (59%), Global health (55%) ...read more

2,378 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.06.043
20 Aug 2020-Cell
Abstract: A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions.

...read more

2,165 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.04.026
28 May 2020-Cell
Abstract: Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

...read more

2,083 Citations


Performance
Metrics

Author's H-index: 8

No. of papers from the Author in previous years
YearPapers
20215
20204
20181
20171

Top Attributes

Show by:

Author's top 5 most impactful journals

Emerging microbes & infections

2 papers, 75 citations

Nature Communications

2 papers, 25 citations

Journal of General Virology

1 papers, 15 citations

Cell

1 papers, 10.1K citations

Network Information
Related Authors (5)
Markus Hoffmann

103 papers, 14.8K citations

94% related
Hannah Kleine-Weber

16 papers, 12.1K citations

93% related
Stefan Pöhlmann

218 papers, 27.4K citations

85% related
Marcel A. Müller

151 papers, 32.9K citations

82% related
Christian Drosten

527 papers, 77K citations

77% related