Author
Simon Tait
Other affiliations: University of Bradford
Bio: Simon Tait is an academic researcher from University of Sheffield. The author has contributed to research in topics: Sanitary sewer & Sediment. The author has an hindex of 26, co-authored 150 publications receiving 2260 citations. Previous affiliations of Simon Tait include University of Bradford.
Topics: Sanitary sewer, Sediment, Turbulence, Combined sewer, Erosion
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors present a framework for mapping and quantifying sources of uncertainty in urban drainage models and their links, including a discussion of its definition and an evaluation of methods that could be used to assess its overall importance.
Abstract: The current state of knowledge regarding uncertainties in urban drainage models is poor. This is in part due to the lack of clarity in the way model uncertainty analyses are conducted and how the results are presented and used. There is a need for a common terminology and a conceptual framework for describing and estimating uncertainties in urban drainage models. Practical tools for the assessment of model uncertainties for a range of urban drainage models are also required to be developed. This paper, produced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, is a contribution to the development of a harmonised framework for defining and assessing uncertainties in the field of urban drainage modelling. The sources of uncertainties in urban drainage models and their links are initially mapped out. This is followed by an evaluation of each source, including a discussion of its definition and an evaluation of methods that could be used to assess its overall importance. Finally, an approach for a Global Assessment of Modelling Uncertainties (GAMU) is proposed, which presents a new framework for mapping and quantifying sources of uncertainty in urban drainage models.
140 citations
TL;DR: In this article, a more rigorous financial assessment of domestic RWH systems was conducted, and it was found that harvesting rainwater was significantly less cost effective than relying solely on mains-only water.
Abstract: Rainwater harvesting (RWH) can be used to reduce the demand for potable mains water. At the single-building scale, previous research has focused on water-saving potential, while financial assessment has either been omitted or considered in an ad hoc manner. This paper reports on the application of a more rigorous financial analysis of domestic RWH systems than had been conducted previously. Whole life costing was selected as the most appropriate financial assessment technique. A total of 3840 domestic system configurations were assessed at a daily time step, taking into account various stakeholder perspectives and future cost scenarios. In each case, it was found that harvesting rainwater was significantly less cost effective than relying solely on mains-only water. The domestic RWH systems generally resulted in financial losses approximately equal to their capital costs. Without significant financial support, domestic RWH is unlikely to be cost effective for all reasonably foreseeable scenarios.
121 citations
TL;DR: In this article, statistical tools have been adopted which describe the degree of surface organization on water-worked sediment bed surfaces, and the bed stability can be evaluated in relative terms using the properties of the probability density distribution of the bed surface elevations and in absolute terms using a properly defined 2D structure function.
Abstract: [1] In evaluating the resistance of sediment particles to entrainment by the action of the flow in a river, the grain geometry is usually characterized using representative sizes. This approach has been dictated, initially by lack of physical insight, but more recently by the lack of analytical tools able to describe the 3-D nature of surface grain organization on water-worked sediment beds. Laboratory experiments are presented where mixed grain size beds were mobilized under a range of hydraulic and sediment input conditions. Detailed bed topography was measured at various stages. Statistical tools have been adopted which describe the degree of surface organization on water-worked sediment bed surfaces. The degree of particle organization and the bed stability can be evaluated in relative terms using the properties of the probability density distribution of the bed surface elevations and in absolute terms using a properly defined 2-D structure function. The methods described can be applied directly to natural water-worked surfaces given the availability of appropriate bed surface elevation data sets.
92 citations
University of Padua1, University of Aberdeen2, Claude Bernard University Lyon 13, Braunschweig University of Technology4, Polytechnic University of Milan5, University of Sheffield6, Leibniz Association7, Queen Mary University of London8, Norwegian University of Science and Technology9, University of Dundee10, Massachusetts Institute of Technology11, University of Illinois at Urbana–Champaign12
TL;DR: The role of experimental methods, theoretical modelling, statistical tools, and conceptual upscaling methods in future research is discussed from both engineering and ecological perspectives in this paper, and potential paths to resolve critical issues, such as hydrodynamically-driven mass transport processes at interfaces and associated responses of organisms through the development of traits.
Abstract: Ecologically-appropriate management of natural and constructed surface water bodies has become increasingly important given the growing anthropogenic pressures, statutory regulations, and climate-change impacts on environmental quality. The development of management strategies requires that a number of knowledge gaps be addressed through interdisciplinary research efforts particularly focusing on the water-biota and water-sediment interfaces where most critical biophysical processes occur. This paper discusses the current state of affairs in this field and highlights potential paths to resolve critical issues, such as hydrodynamically-driven mass transport processes at interfaces and associated responses of organisms through the development of traits. The roles of experimental methods, theoretical modelling, statistical tools, and conceptual upscaling methods in future research are discussed from both engineering and ecological perspectives. The aim is to attract the attention of experienced and e...
86 citations
TL;DR: The problems created by sediment deposits in combined sewer systems (sanitary and storm) are internationally recognized as discussed by the authors, and the loss in conveyance due to these deposits contributes to hydraulic overlo...
Abstract: The problems created by sediment deposits in combined sewer systems (sanitary and storm) are internationally recognized. The loss in conveyance due to these deposits contributes to hydraulic overlo...
78 citations
Cited by
More filters
Journal Article•
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.
3,742 citations
TL;DR: The analysis of time series: An Introduction, 4th edn. as discussed by the authors by C. Chatfield, C. Chapman and Hall, London, 1989. ISBN 0 412 31820 2.
Abstract: The Analysis of Time Series: An Introduction, 4th edn. By C. Chatfield. ISBN 0 412 31820 2. Chapman and Hall, London, 1989. 242 pp. £13.50.
1,583 citations
[...]
01 Jan 2006
TL;DR: In this article, the authors offer suggestions related to helping a student deal with bullying in schools, as well as creating an environment where that individual can easily return to the school community.
Abstract: This section offers suggestions related to helping a student deal with bullying in schools, as well as creating an environment where that individual can easily return to the school community. It also mentions the significance of the method 'Shared Responsibility' in dealing with the situation.
755 citations
TL;DR: The ability to predict urban hydrology has also evolved, to deliver models suited to the small temporal and spatial scales typical of urban and peri-urban applications as discussed by the authors. But despite the advances, many important challenges remain.
Abstract: Urban hydrology has evolved to improve the way urban runoff is managed for flood protection, public health and environmental protection. There have been significant recent advances in the measurement and prediction of urban rainfall, with technologies such as radar and microwave networks showing promise. The ability to predict urban hydrology has also evolved, to deliver models suited to the small temporal and spatial scales typical of urban and peri-urban applications. Urban stormwater management increasingly consider the needs of receiving environments as well as those of humans. There is a clear trend towards approaches that attempt to restore pre-development flow-regimes and water quality, with an increasing recognition that restoring a more natural water balance benefits not only the environment, but enhances the liveability of the urban landscape. Once regarded only as a nuisance, stormwater is now increasingly regarded as a resource. Despite the advances, many important challenges in urban hydrology remain. Further research into the spatio-temporal dynamics of urban rainfall is required to improve short-term rainfall prediction. The performance of stormwater technologies in restoring the water balance and in removing emerging priority pollutants remain poorly quantified. All of these challenges are overlaid by the uncertainty of climate change, which imposes a requirement to ensure that stormwater management systems are adaptable and resilient to changes. Urban hydrology will play a critical role in addressing these challenges.
714 citations