scispace - formally typeset
Search or ask a question
Author

Simone Baldi

Bio: Simone Baldi is an academic researcher from Southeast University. The author has contributed to research in topics: Adaptive control & Lyapunov function. The author has an hindex of 27, co-authored 178 publications receiving 2606 citations. Previous affiliations of Simone Baldi include University of Florence & Information Technology Institute.


Papers
More filters
Journal Article•DOI•
TL;DR: In this paper, a control algorithm for joint demand response management and thermal comfort optimization in micro-grids equipped with renewable energy sources and energy storage units is presented, where the objective is to minimize the aggregate energy cost and thermal discomfort of the microgrid.

276 citations

Journal Article•DOI•
TL;DR: This paper proposes a novel CACC strategy that overcomes the homogeneity assumption and that is able to adapt its action and achieve string stability even for uncertain heterogeneous platoons, and forms an extended average dwell-time framework and designs an adaptive switched control strategy.
Abstract: The advances in distributed intervehicle communication networks have stimulated a fruitful line of research in cooperative adaptive cruise control (CACC). In CACC, individual vehicles, grouped into platoons, must automatically adjust their own speed using on-board sensors and communication with the preceding vehicle so as to maintain a safe intervehicle distance. However, a crucial limitation of the state of the art of this control scheme is that the string stability of the platoon can be proven only when the vehicles in the platoon have identical driveline dynamics and perfect engine performance (homogeneous platoon), and possibly an ideal communication channel. This paper proposes a novel CACC strategy that overcomes the homogeneity assumption and that is able to adapt its action and achieve string stability even for uncertain heterogeneous platoons. Furthermore, in order to handle the inevitable communication losses, we formulate an extended average dwell-time framework and design an adaptive switched control strategy, which activates an augmented CACC or an augmented adaptive cruise control strategy depending on communication reliability. Stability is proven analytically and simulations are conducted to validate the theoretical analysis.

174 citations

Journal Article•DOI•
TL;DR: In this paper, a simulation-based optimization approach for the design of an energy management system (EMS) with the capability of controlling the loads so as to optimize the aggregate performance of the microgrid is presented.

133 citations

Journal Article•DOI•
TL;DR: A novel ASMC methodology is proposed which does not require a priori bounded uncertainty, and a general class of Euler–Lagrange systems is taken as a case study to show the applicability of the proposed design.

127 citations

Journal Article•DOI•
TL;DR: The result is that the supervised switching mechanism can moderate the chance that destabilizing controllers be switched-on and reduce both the magnitude and time durations of ''learning'' transients after start-up, while stability in the large is guaranteed under the minimal conceivable assumption that a stabilizing candidate controller exist.

122 citations


Cited by
More filters
Proceedings Article•DOI•
15 Oct 1995
TL;DR: In this article, the authors present a model for dynamic control systems based on Adaptive Control System Design Steps (ACDS) with Adaptive Observers and Parameter Identifiers.
Abstract: 1. Introduction. Control System Design Steps. Adaptive Control. A Brief History. 2. Models for Dynamic Systems. Introduction. State-Space Models. Input/Output Models. Plant Parametric Models. Problems. 3. Stability. Introduction. Preliminaries. Input/Output Stability. Lyapunov Stability. Positive Real Functions and Stability. Stability of LTI Feedback System. Problems. 4. On-Line Parameter Estimation. Introduction. Simple Examples. Adaptive Laws with Normalization. Adaptive Laws with Projection. Bilinear Parametric Model. Hybrid Adaptive Laws. Summary of Adaptive Laws. Parameter Convergence Proofs. Problems. 5. Parameter Identifiers and Adaptive Observers. Introduction. Parameter Identifiers. Adaptive Observers. Adaptive Observer with Auxiliary Input. Adaptive Observers for Nonminimal Plant Models. Parameter Convergence Proofs. Problems. 6. Model Reference Adaptive Control. Introduction. Simple Direct MRAC Schemes. MRC for SISO Plants. Direct MRAC with Unnormalized Adaptive Laws. Direct MRAC with Normalized Adaptive Laws. Indirect MRAC. Relaxation of Assumptions in MRAC. Stability Proofs in MRAC Schemes. Problems. 7. Adaptive Pole Placement Control. Introduction. Simple APPC Schemes. PPC: Known Plant Parameters. Indirect APPC Schemes. Hybrid APPC Schemes. Stabilizability Issues and Modified APPC. Stability Proofs. Problems. 8. Robust Adaptive Laws. Introduction. Plant Uncertainties and Robust Control. Instability Phenomena in Adaptive Systems. Modifications for Robustness: Simple Examples. Robust Adaptive Laws. Summary of Robust Adaptive Laws. Problems. 9. Robust Adaptive Control Schemes. Introduction. Robust Identifiers and Adaptive Observers. Robust MRAC. Performance Improvement of MRAC. Robust APPC Schemes. Adaptive Control of LTV Plants. Adaptive Control for Multivariable Plants. Stability Proofs of Robust MRAC Schemes. Stability Proofs of Robust APPC Schemes. Problems. Appendices. Swapping Lemmas. Optimization Techniques. Bibliography. Index. License Agreement and Limited Warranty.

4,378 citations

Journal Article•DOI•
TL;DR: This paper is a brief survey on the existing problems and challenges inherent in model-based control (MBC) theory, and some important issues in the analysis and design of data-driven control (DDC) methods are here reviewed and addressed.

828 citations

Journal Article•DOI•
TL;DR: An overview of the Smart Grid with its general features, functionalities and characteristics is presented in this paper, where the authors have identified the research activities, challenges and issues of Smart Grid fundamental and related technologies.
Abstract: Energy sustainability and environmental preservation have become worldwide concerns with the many manifestations of climate change and the continually increasing demand for energy. As cities and nations become more technologically advanced, electricity consumption rises to levels that may no longer be manageable if left unattended. The Smart Grid offers an answer to the shift to more sustainable technologies such as distributed generation and microgrids. A general public awareness and adequate attention from potential researchers and policy makers is crucial. This paper presents an overview of the Smart Grid with its general features, functionalities and characteristics. It presents the Smart Grid fundamental and related technologies and have identified the research activities, challenges and issues. It demonstrates how these technologies have shaped the modern electricity grid and continued to evolve and strengthen its role in the better alignment of energy demand and supply. Smart Grid implementation and practices in various locations are also unveiled. Concrete energy policies facilitate Smart Grid initiatives across the nations. Interestingly, Smart Grid practices in different regions barely indicate competition but rather an unbordered community of similar aspirations and shared lessons.

550 citations

Book Chapter•DOI•
01 Jan 1990

484 citations