scispace - formally typeset
Search or ask a question
Author

Simone E Salghetti

Bio: Simone E Salghetti is an academic researcher from Cold Spring Harbor Laboratory. The author has contributed to research in topics: Transcription factor & Ubiquitin ligase. The author has an hindex of 11, co-authored 13 publications receiving 2555 citations.

Papers
More filters
Journal ArticleDOI
05 Mar 2004-Cell
TL;DR: An inducible system to visualize gene expression at the levels of DNA, RNA and protein in living cells is developed, able to correlate changes in chromatin structure with the progression of transcriptional activation allowing for a real-time integrative view of gene expression.

696 citations

Journal ArticleDOI
TL;DR: It is reported that the oncop protein and Ub ligase Skp2 regulates Myc ubiquitylation and stability, and an unexpected oncoprotein connection is revealed that may play an important role in controlling cell growth in normal and cancer cells.

495 citations

Journal ArticleDOI
TL;DR: The data reveal a complex network of interactions regulating Myc destruction, and imply that enhanced protein stability contributes to oncogenic transformation by mutant Myc proteins.
Abstract: The human proto-oncogene c-myc encodes a highly unstable transcription factor that promotes cell proliferation. Although the extreme instability of Myc plays an important role in preventing its accumulation in normal cells, little is known about how Myc is targeted for rapid destruction. Here, we have investigated mechanisms regulating the stability of Myc. We show that Myc is destroyed by ubiquitin-mediated proteolysis, and define two elements in Myc that oppositely regulate its stability: a transcriptional activation domain that promotes Myc destruction, and a region required for association with the POZ domain protein Miz-1 that stabilizes Myc. We also show that Myc is stabilized by cancer-associated and transforming mutations within its transcriptional activation domain. Our data reveal a complex network of interactions regulating Myc destruction, and imply that enhanced protein stability contributes to oncogenic transformation by mutant Myc proteins.

439 citations

Journal ArticleDOI
31 Aug 2001-Science
TL;DR: It is proposed that ubiquitylation regulates TAD function by serving as a dual signal for activation and activator destruction, demonstrating that activator ubiquitylated is essential for transcriptional activation.
Abstract: The ability of transcriptional activation domains (TADs) to signal ubiquitin-mediated proteolysis suggests an involvement of the ubiquitin-proteasome pathway in transcription. To probe this involvement, we asked how ubiquitylation regulates the activity of a transcription factor containing the VP16 TAD. We show that the VP16 TAD signals ubiquitylation through the Met30 ubiquitin-ligase and that Met30 is also required for the VP16 TAD to activate transcription. The requirement for Met30 in transcription is circumvented by fusion of ubiquitin to the VP16 activator, demonstrating that activator ubiquitylation is essential for transcriptional activation. We propose that ubiquitylation regulates TAD function by serving as a dual signal for activation and activator destruction.

393 citations

Journal ArticleDOI
TL;DR: Evidence is presented that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis.
Abstract: Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.

249 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Many gene sequences in eukaryotic genomes encode entire proteins or large segments of proteins that lack a well-structured three-dimensional fold, whereas others constitute flexible linkers that have a role in the assembly of macromolecular arrays.
Abstract: Many gene sequences in eukaryotic genomes encode entire proteins or large segments of proteins that lack a well-structured three-dimensional fold. Disordered regions can be highly conserved between species in both composition and sequence and, contrary to the traditional view that protein function equates with a stable three-dimensional structure, disordered regions are often functional, in ways that we are only beginning to discover. Many disordered segments fold on binding to their biological targets (coupled folding and binding), whereas others constitute flexible linkers that have a role in the assembly of macromolecular arrays.

3,599 citations

Journal ArticleDOI
TL;DR: The elucidation ofMYB protein function and regulation that is possible in Arabidopsis will provide the foundation for predicting the contributions of MYB proteins to the biology of plants in general.

3,542 citations

Journal ArticleDOI
30 Mar 2012-Cell
TL;DR: The richness of the understanding of MYC is reviewed, highlighting new biological insights and opportunities for cancer therapies.

2,572 citations

Journal ArticleDOI
TL;DR: This review focuses on the composition, regulation and function of cullin–RING ligases, and describes how these enzymes can be characterized by a set of general principles.
Abstract: Cullin–RING complexes comprise the largest known class of ubiquitin ligases. Owing to the great diversity of their substrate-receptor subunits, it is possible that there are hundreds of distinct cullin–RING ubiquitin ligases in eukaryotic cells, which establishes these enzymes as key mediators of post-translational protein regulation. In this review, we focus on the composition, regulation and function of cullin–RING ligases, and describe how these enzymes can be characterized by a set of general principles.

1,985 citations

Journal ArticleDOI
TL;DR: The results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise.
Abstract: Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise.

1,728 citations