scispace - formally typeset
Search or ask a question
Author

Siripen Kalayanarooj

Bio: Siripen Kalayanarooj is an academic researcher from Thailand Ministry of Public Health. The author has contributed to research in topics: Dengue fever & Dengue virus. The author has an hindex of 52, co-authored 110 publications receiving 10997 citations. Previous affiliations of Siripen Kalayanarooj include Boston Children's Hospital & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: Higher peak titers were associated with increased disease severity for the 31 patients with a peak titer identified, and increased dengue disease severity correlated with high viremia titer, secondary d Dengue virus infection, and DEN-2 virus type.
Abstract: Viremia titers in serial plasma samples from 168 children with acute dengue virus infection who were enrolled in a prospective study at 2 hospitals in Thailand were examined to determine the role of virus load in the pathogenesis of dengue hemorrhagic fever (DHF). The infecting virus serotype was identified for 165 patients (DEN-1, 46 patients; DEN-2, 47 patients; DEN-3, 47 patients, DEN-4, 25 patients). Patients with DEN-2 infections experienced more severe disease than those infected with other serotypes. Eighty-one percent of patients experienced a secondary dengue virus infection that was associated with more severe disease. Viremia titers were determined for 41 DEN-1 and 46 DEN-2 patients. Higher peak titers were associated with increased disease severity for the 31 patients with a peak titer identified (mean titer of 107.6 for those with dengue fever vs. 108.5 for patients with DHF, P=.01). Increased dengue disease severity correlated with high viremia titer, secondary dengue virus infection, and DEN-2 virus type.

1,548 citations

Journal ArticleDOI
TL;DR: In this paper, the secreted dengue virus nonstructural protein NS1 (sNS1) was measured daily in 32 children with Dengue-2 virus infections participating in a prospective, hospital-based study.
Abstract: Infection with any 1 of 4 dengue viruses produces a spectrum of clinical illness ranging from a mild undifferentiated febrile illness to dengue fever (DF) to dengue hemorrhagic fever (DHF), a potentially life-threatening disease. The morbidity and mortality of DHF can be reduced by early hospitalization and careful supportive care. To determine its usefulness as a predictor of DHF, plasma levels of the secreted dengue virus nonstructural protein NS1 (sNS1) were measured daily in 32 children with dengue-2 virus infections participating in a prospective, hospital-based study. Free sNS1 levels in plasma correlated with viremia levels and were higher in patients with DHF than in those with DF. An elevated free sNS1 level (> or =600 ng/mL) within 72 h of illness onset identified patients at risk for developing DHF.

646 citations

Journal ArticleDOI
TL;DR: Simple clinical and laboratory parameters are identified that help to identify children with DF or DHF, including plasma AST levels were higher in children who developed DHF than in those with DF.
Abstract: A prospective observational study was conducted to identify early indicators of acute dengue virus infection. Children with fever for <72 h without obvious cause were studied at hospitals in Bangkok and Kamphaeng Phet, Thailand, until resolution of fever. Of 172 evaluable subjects (91% of enrollees), 60 (35%) had dengue, including 32 with dengue fever (DF) and 28 with dengue hemorrhagic fever (DHF). At enrollment, children with dengue were more likely than children with other febrile illnesses (OFI) to report anorexia, nausea, and vomiting and to have a positive tourniquet test, and they had lower total white blood cell counts, absolute neutrophil and absolute monocyte counts, and higher plasma alanine and aspartate (AST) aminotransferase levels than children with OFI. Plasma AST levels were higher in children who developed DHF than in those with DF. These data identify simple clinical and laboratory parameters that help to identify children with DF or DHF.

642 citations

Journal ArticleDOI
TL;DR: Quantitative differences in virus burden and host immune responses, and the timing of type 1 cytokine responses, have differing influences on the severity of disease manifestations during secondary dengue-3 virus infections.
Abstract: Dengue hemorrhagic fever (DHF), the most severe form of illness following infection with a dengue virus, is characterized by plasma leakage, thrombocytopenia, and hepatic inflammation. The interrelationships among virus burden, immune activation, and development of DHF were examined in 54 children with secondary dengue-3 virus infections participating in a prospective, hospital-based study. DHF was associated with higher mean plasma viremia early in illness and earlier peak plasma interferon-γ levels. Maximum plasma viremia levels correlated with the degree of plasma leakage and thrombocytopenia. Maximum plasma levels of interleukin (IL)-10 and soluble tumor necrosis factor receptor-II correlated with the degree of thrombocytopenia, independently of viremia levels. Hepatic transaminase elevation correlated with plasma soluble IL-2 receptor levels and not with viremia levels. Quantitative differences in virus burden and host immune responses, and the timing of type 1 cytokine responses, have differing influences on the severity of disease manifestations during secondary dengue-3 virus infections.

487 citations

Journal ArticleDOI
TL;DR: This study demonstrates that all four serotypes of d Dengue virus can cause dengue hemorrhagic fever, that all dengu patients as defined by serology experience viremia during the febrile phase, and that as fever subsides, so does vireia.
Abstract: A multicenter effort was begun in 1994 to characterize the pathophysiology of dengue using a study design that minimized patient selection bias by offering enrollment to all children with undifferentiated fever for <72 h. In the first year, 189 children were enrolled (age range, 8 months to 14 years). Thirty-two percent of these children had dengue infections (60 volunteers). The percentage of children with a secondary dengue infection was 93%, with only 4 (7%) having a primary dengue infection. The virus isolation rate from the plasma of children with dengue was 98%. Viremia correlated highly with temperature. All four dengue virus serotypes were isolated at both study sites. This study demonstrates that all four serotypes of dengue virus can cause dengue hemorrhagic fever, that all dengue patients as defined by serology experience viremia during the febrile phase, and that as fever subsides, so does viremia.

436 citations


Cited by
More filters
Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.
Abstract: Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

7,238 citations

Journal ArticleDOI
TL;DR: A review of the changing epidemiology of dengue and hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both Dengue fever and DVF, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control can be found in this paper.
Abstract: Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.

3,886 citations

01 Jan 2014
TL;DR: A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.

2,656 citations

Journal ArticleDOI
TL;DR: A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated.
Abstract: Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future.

1,732 citations

Journal Article
TL;DR: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation, move it to a nose cone for hair removal using cream and reduce anesthesia to maintain proper heart rate.
Abstract: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation. 2. Once the animal is sedated, move it to a nose cone for hair removal using cream. Only apply cream to the area of the chest that will be utilized for imaging. Once the hair is removed, wipe area with wet gauze to ensure all hair is removed. 3. Move the animal to the imaging platform and tape its paws to the ECG lead plates and insert rectal probe. Body temperature should be maintained at 36-37°C. During imaging, reduce anesthesia to maintain proper heart rate. If the animal shows signs of being awake, use a higher concentration of anesthetic.

1,557 citations