scispace - formally typeset
Search or ask a question
Author

Sishen Xie

Other affiliations: Peking University
Bio: Sishen Xie is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Carbon nanotube & Nanorod. The author has an hindex of 52, co-authored 228 publications receiving 11661 citations. Previous affiliations of Sishen Xie include Peking University.


Papers
More filters
Journal ArticleDOI
06 Dec 1996-Science
TL;DR: Large-scale synthesis of aligned carbon nanotubes was achieved by using a method based on chemical vapor deposition catalyzed by iron nanoparticles embedded in mesoporous silica to form an aligned array of isolated tubes with spacings between the tubes.
Abstract: Large-scale synthesis of aligned carbon nanotubes was achieved by using a method based on chemical vapor deposition catalyzed by iron nanoparticles embedded in mesoporous silica. Scanning electron microscope images show that the nanotubes are approximately perpendicular to the surface of the silica and form an aligned array of isolated tubes with spacings between the tubes of about 100 nanometers. The tubes are up to about 50 micrometers long and well graphitized. The growth direction of the nanotubes may be controlled by the pores from which the nanotubes grow.

1,772 citations

Journal ArticleDOI
TL;DR: In this paper, a self-assembled reduced graphene oxide (RGO)/MnO2/GrMoO(2) composite was used as a positive electrode and a RGO/MoO3 composite as a negative electrode in safe aqueous Na2SO4 electrolyte.
Abstract: Asymmetric supercapacitors with high energy density are fabricated using a self-assembled reduced graphene oxide (RGO)/MnO2 (GrMnO(2)) composite as a positive electrode and a RGO/MoO3 (GrMoO(3)) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg(-1) at a power density of 276 W kg(-1) and a maximum specific capacitance of 307 F g(-1), consequently giving rise to an excellent Ragone plot. In addition, the GrMnO(2)//GrMoO(3) supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next-generation supercapacitors with high energy and high power densities.

597 citations

Journal ArticleDOI
TL;DR: The designed stretchable multifunctional CNT-based strain gauge may have various potential applications in human friendly and wearable smart electronics, subsequently demonstrated by the prototypical data glove and respiration monitor.
Abstract: Realization of advanced bio-interactive electronic devices requires mechanically compliant sensors with the ability to detect extremely large strain. Here, we design a new multifunctional carbon nanotube (CNT) based capacitive strain sensors which can detect strains up to 300% with excellent durability even after thousands of cycles. The CNT-based strain gauge devices exhibit deterministic and linear capacitive response throughout the whole strain range with a gauge factor very close to the predicted value (strictly 1), representing the highest sensitivity value. The strain tests reveal the presented strain gauge with excellent dynamic sensing ability without overshoot or relaxation, and ultrafast response at sub-second scale. Coupling these superior sensing capabilities to the high transparency, physical robustness and flexibility, we believe the designed stretchable multifunctional CNT-based strain gauge may have various potential applications in human friendly and wearable smart electronics, subsequently demonstrated by our prototypical data glove and respiration monitor.

555 citations

Journal ArticleDOI
Wei Yi1, L. Lu1, Zhang Dian-lin1, Zhengwei Pan1, Sishen Xie1 
TL;DR: In this article, the specific heat and thermal conductivity of aligned carbon multiwall nanotubes (MWNTs) have been measured as a rolled-up version of graphene sheets, and a MWNT of a few tens nm diameter is found to demonstrate a strikingly linear temperature-dependent specific heat over the entire temperature range measured (10-300 K).
Abstract: The specific heat and thermal conductivity of millimeter-long aligned carbon multiwall nanotubes (MWNT's) have been measured. As a rolled-up version of graphene sheets, a MWNT of a few tens nm diameter is found to demonstrate a strikingly linear temperature-dependent specific heat over the entire temperature range measured (10--300 K). The results indicate that interwall coupling in MWNT's is rather weak compared with its parent form, graphite, so that one can treat a MWNT as a few decoupled two-dimensional single wall tubules. The thermal conductivity is found to be low, indicating the existence of substantial amounts of defects in the MWNT's prepared by a chemical-vapor-deposition method.

474 citations

Journal ArticleDOI
TL;DR: In this article, a general and facile way was developed to prepare Ag-related bimetallic alloy NPs with hollow/porous structures, including AgAu, AgPd, and AgPt.
Abstract: Bimetallic alloy nanoparticles (NPs) exhibit unique optical and catalytic properties that are dependent on their morphology and composition. In this paper, a general and facile way was developed to prepare Ag-related bimetallic alloy NPs with hollow/porous structures, including AgAu, AgPd, and AgPt. The formation of the alloy structures is evidenced by high-resolution transmission electron microscopy (TEM), scanning transmission electron microscopy−energy-dispersive X-ray analysis (STEM-EDX) mapping, and ultraviolet−visible−near-infrared (UV−vis−NIR) absorption spectra. AgM alloy NPs exhibit peroxidase-like activity. A unique composition dependence is found and can be used to tailor the catalytic activity. In addition to the recent discoveries about peroxidase mimetics on Fe3O4 NPs and sheetlike FeS nanostructures, our findings suggest a new type of candidate as peroxidase mimics. Furthermore, for noble metals, apart from size and shape, tailoring the composition poses another effective way to tune the ca...

400 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

Journal ArticleDOI
22 Jan 1999-Science
TL;DR: The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported and the mechanisms of nanotube growth and self-orientation are elucidated.
Abstract: The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported. The approach involves chemical vapor deposition, catalytic particle size control by substrate design, nanotube positioning by patterning, and nanotube self-assembly for orientation. The mechanisms of nanotube growth and self-orientation are elucidated. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotube devices integrated into silicon technology.

3,093 citations