scispace - formally typeset
Search or ask a question
Author

Sisi Zhou

Bio: Sisi Zhou is an academic researcher from Yale University. The author has contributed to research in topics: Quantum metrology & Quantum. The author has an hindex of 11, co-authored 32 publications receiving 526 citations. Previous affiliations of Sisi Zhou include University of Chicago & University of Illinois at Chicago.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed.
Abstract: Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

176 citations

Journal ArticleDOI
TL;DR: In this article, a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed.
Abstract: Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed which suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

120 citations

Journal ArticleDOI
Sisi Zhou1, Liang Jiang1
TL;DR: In this paper, a comprehensive Fisher information analysis is put forward to understand and achieve the limits in imaging resolution, and it is shown that for any incoherence sources, a 1D or 2D image can be precisely estimated up to its second moment.
Abstract: A comprehensive Fisher information analysis is put forward to understand and achieve the limits in imaging resolution. It is shown that for any incoherence sources, a 1D or 2D image can be precisely estimated up to its second moment.

95 citations

Journal ArticleDOI
TL;DR: A semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode.
Abstract: Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.

82 citations

Journal ArticleDOI
TL;DR: A new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - \delta $$1-δ and digit accuracy ϵ for each Fourier coefficient is detailed.
Abstract: The conventional Quantum Fourier Transform, with exponential speedup compared to the classical Fast Fourier Transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, the Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum algorithm to encode the Fourier coefficients in the computational basis, with success probability $1-\delta$ and desired precision $\epsilon$. Its time complexity %$\mathcal{O}\big((\log N)^2\log(N/\delta)/\epsilon)\big)$ depends polynomially on $\log(N)$, where $N$ is the problem size, and linearly on $\log(1/\delta)$ and $1/\epsilon$. We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.

31 citations


Cited by
More filters
01 Jan 2016
TL;DR: The mathematical methods of statistics is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading mathematical methods of statistics. Maybe you have knowledge that, people have search numerous times for their favorite novels like this mathematical methods of statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious virus inside their laptop. mathematical methods of statistics is available in our book collection an online access to it is set as public so you can download it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the mathematical methods of statistics is universally compatible with any devices to read.

878 citations

Journal ArticleDOI
TL;DR: An overview of the field of Variational Quantum Algorithms is presented and strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage are discussed.
Abstract: Applications such as simulating complicated quantum systems or solving large-scale linear algebra problems are very challenging for classical computers due to the extremely high computational cost. Quantum computers promise a solution, although fault-tolerant quantum computers will likely not be available in the near future. Current quantum devices have serious constraints, including limited numbers of qubits and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which use a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. Here we overview the field of VQAs, discuss strategies to overcome their challenges, and highlight the exciting prospects for using them to obtain quantum advantage.

842 citations

01 Jul 2013
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Abstract: Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1, 2, 3, 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

589 citations