scispace - formally typeset
Search or ask a question
Author

Sitaram Dash

Other affiliations: VIT University
Bio: Sitaram Dash is an academic researcher from Indira Gandhi Centre for Atomic Research. The author has contributed to research in topics: Thin film & Nanocrystalline material. The author has an hindex of 34, co-authored 164 publications receiving 3161 citations. Previous affiliations of Sitaram Dash include VIT University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a brief description of TiO2-Au nanocomposite synthesis by different methods viz. sol-gel, photodeposition, deposition-precipitation simple reducing method and dispersion method is provided.
Abstract: TiO2 is indeed one of the widely used semiconductors employed for photocatalytic hydrogen production. Most of its photocatalytic activity is achieved in its crystalline form. However, its photocatalytic activity is limited to ultraviolet region. For making TiO2 visible light active; Au deposition is strongly recommended due to its surface plasmon feature. Au deposition enhances the photocatalytic activity of both crystalline and nanocrystalline TiO2. Efficiency of photocatalytic activity is controlled by shape and size of Au nanoparticle subsequently the synthetic methodology plays an important role. Herein, we furnish a brief description of TiO2–Au nanocomposite synthesis by different methods viz. sol–gel, photodeposition, deposition–precipitation simple reducing method and dispersion method. A discussion on physical properties of the resultant material is also provided. Three different types of mechanism has been described depending on the type of irradiation and form of TiO2 (crystalline and nanocrytalline). A comparative hydrogen production yield is also tabulated to get an idea about the best synthesis methodology and form of TiO2 for efficient photocatalysis.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported electrochemical synthesis, phase evolution and hydrogen generation efficiency of anatase, rutile and brookite (ARB) TiO 2 nanotubes for the first time.
Abstract: The study reports electrochemical synthesis, phase evolution and hydrogen generation efficiency of anatase, anatase-rutile and anatase-rutile-brookite (ARB) TiO 2 nanotubes for the first time. The SEM and TEM micrographs confirm the tubular morphology of the samples. The presence of anatase, rutile and brookite phases in a single nanotube is confirmed from high resolution TEM analysis. The water splitting efficiency of the three systems are studied under one sun illumination. It is observed that the anatase-rutile-brookite TiO 2 nanotubes are highly efficient compared to anatase-rutile or anatase TiO 2 nanotubes. The hydrogen generated by ARB composites, after four hours of one sun illumination, is found to be nearly twice that of anatase TiO 2 nanotubes and 1.6 times that of anatase-rutile TiO 2 nanotubes. The results suggest that the ARB in single nanotube having two junction interfaces, highly facilitate inter-particle charge transfer compared to single junction anatase-rutile or bare anatase TiO 2 nanotubes. From the deconvolution of PL spectra and the synchrotron radiation assisted valence band edge analysis, the band diagram for the anatase-rutile-brookite phase is constructed. The charge separation and its transfer pathway for efficient photo-assisted water splitting are delineated. This opens a new route for the simple synthesis and study of tri-phase TiO 2 for efficient photocatalytic water splitting compared to the widely studied two phase TiO 2 .

107 citations

Journal ArticleDOI
TL;DR: It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure.
Abstract: Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication.

96 citations

Journal ArticleDOI
TL;DR: In this paper, vanadium dioxide (VO2) nanostructured films are synthesized by pulsed dc-magnetron sputtering of V target followed by oxidation in O2 atmosphere at 550°C.
Abstract: Methane (CH4) gas sensing properties of novel vanadium dioxide (VO2) nanostructured films is reported for the first time. The single phase nanostructures are synthesized by pulsed dc-magnetron sputtering of V target followed by oxidation in O2 atmosphere at 550 °C. The partial pressure of O2 is controlled to obtain stoichiometric VO2 with the samples showing rutile monoclinic crystalline symmetry and regions of rod shaped nano-architectures. These nanostructured films exhibit a reversible semiconductor to metal transition in the temperature range of 60–70 °C. Gas sensing experiments are carried out in the temperature span from 25 °C to 200 °C in presence of CH4. These experiments reveal that the films respond very well at temperatures as low as 50 °C, in the semiconducting state.

88 citations

Journal ArticleDOI
TL;DR: In this article, photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol-water mixture were carried out at room temperature and the highest hydrogen generation efficiency was observed at 1-2.5% of Pt loading.

86 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,†
Abstract: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,† †State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China ‡Department of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States

1,990 citations

Journal ArticleDOI
TL;DR: Compared to the conventional flame emission spectroscopy, LIBS atomizes only the small portion of the sample by the focused laser pulse, which makes a tiny spark on the sample, and capturing the instant light is a major skill to collect sufficient intensity of the emitting species.
Abstract: ■ CONTENTS General Information: Books, Reviews, and Conferences 640 Fundamentals 641 Interaction of Laser Beam with Matter 641 Factors Affecting Laser Ablation and LaserInduced Plasma Formation 642 Influence of Target on the Laser-Induced Plasmas 642 Influence of Laser Parameters on the LaserInduced Plasmas 643 Laser Wavelength (λ) 643 Laser Pulse Duration (τ) 643 Laser Pulse Energy (E) 645 Influence of Ambient Gas on the Laser-Induced Plasmas 645 LIBS Methods 647 Double Pulse LIBS 647 Femtosecond LIBS 651 Resonant LIBS 652 Ranging Approaches 652 Applications 654 Surface Inspection, Depth Profiling, and LIBS Imaging 654 Cultural Heritage 654 Industrial Analysis 655 Environmental Monitoring 656 Biomedical and Pharmaceutical Analysis 658 Security and Forensics 659 Analysis of Liquids and Submerged Solids 660 Space Exploration and Isotopic Analysis 662 Space Exploration 662 Isotopic Analysis 662 Conclusions and Future Outlook 663 Author Information 664 Corresponding Author 664 Notes 664 Biographies 664 Acknowledgments 664 References 664

847 citations

Journal ArticleDOI
TL;DR: A detailed overview of the thermal/fluid properties inherent in the direct laser deposition (DLD) process can be found in this article, with a focus on the mechanical properties and microstructure of parts manufactured via DLD.
Abstract: Laser-based additive manufacturing (LBAM) processes can be utilized to generate functional parts (or prototypes) from the ground-up via layer-wise cladding – providing an opportunity to generate complex-shaped, functionally graded or custom-tailored parts that can be utilized for a variety of engineering applications. Directed Energy Deposition (DED), utilizes a concentrated heat source, which may be a laser or electron beam, with in situ delivery of powder- or wire-shaped material for subsequent melting to accomplish layer-by-layer part fabrication or single-to-multi layer cladding/repair. Direct Laser Deposition (DLD), a form of DED, has been investigated heavily in the last several years as it provides the potential to (i) rapidly prototype metallic parts, (ii) produce complex and customized parts, (iii) clad/repair precious metallic components and (iv) manufacture/repair in remote or logistically weak locations. DLD and Powder Bed Fusion-Laser (PBF-L) are two common LBAM processes for additive metal part fabrication and are currently demonstrating their ability to revolutionize the manufacturing industry; breaking barriers imposed via traditional, ‘subtractive’ metalworking processes. This article provides an overview of the major advancements, challenges and physical attributes related to DLD, and is one of two Parts focused specifically on DLD. Part I (this article) focuses on describing the thermal/fluidic phenomena during the powder-fed DLD process, while Part II focuses on the mechanical properties and microstructure of parts manufactured via DLD. In this current article, a selection of recent research efforts – including methodology, models and experimental results – will be provided in order to educate the reader of the thermal/fluidic processes that occur during DLD, as well as providing important background information relevant to DLD as a whole. The thermal/fluid phenomena inherent to DLD directly influence the solidification heat transfer which thus impacts the part's microstructure and associated thermo-mechanical properties. A thorough understanding of the thermal/fluid aspects inherent to DLD is vital for optimizing the DLD process and ensuring consistent, high-quality parts.

781 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed.
Abstract: Hydrogen (H2) production via photocatalytic water splitting is one of the most promising technologies for clean solar energy conversion to emerge in recent decades. The achievement of energy production from water splitting would mean that we could use water as a fuel for future energy need. Among the various photocatalytic materials, titanium dioxide (TiO2) is the dominant and most widely studied because of its exceptional physico-chemical characteristics. Surface decoration of metal/non-metal on TiO2 nanoparticles is an outstanding technique to revamp its electronic properties and enrich the H2 production efficiency. Metal dopants play a vital role in separation of electron-hole pairs on the TiO2 surface during UV/visible/simulated solar light irradiation. In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed. We found that Langmuir-Hinshelwood kinetic model is commonly employed by the researchers to demonstrate the rate of H2 production. Copper (Cu), gold (Au) and platinum (Pt) are the most widely studied dopants for TiO2, owing to their superior work function. The metal dopants can amplify the H2 production efficiency of TiO2 through Schottky barrier formation, surface plasmon resonance (SPR), generation of gap states by interaction with TiO2 VB states. The recent advances and important consequences of 2D materials, perovskites, and other novel photocatalysts for H2 generation have also been reviewed.

609 citations