scispace - formally typeset
Search or ask a question
Author

Siu-Kui Au

Bio: Siu-Kui Au is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Operational Modal Analysis & Modal. The author has an hindex of 46, co-authored 156 publications receiving 8462 citations. Previous affiliations of Siu-Kui Au include The Aerospace Corporation & Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set simulation approach is proposed to compute small failure probabilities encountered in reliability analysis of engineering systems, which can be expressed as a product of larger conditional failure probabilities by introducing intermediate failure events.

1,890 citations

Journal ArticleDOI
TL;DR: In this article, an adaptive Markov chain approach is proposed to evaluate the desired integral that is based on the Metropolis-Hastings algorithm and a concept similar to simulated annealing.
Abstract: In a full Bayesian probabilistic framework for "robust" system identification, structural response predictions and performance reliability are updated using structural test data D by considering the predictions of a whole set of possible structural models that are weighted by their updated probability. This involves integrating h(θ)p(θ|D) over the whole parameter space, where θ is a parameter vector defining each model within the set of possible models of the structure, h(θ) is a model prediction of a response quantity of interest, and p(θ|D) is the updated probability density for θ, which provides a measure of how plausible each model is given the data D. The evaluation of this integral is difficult because the dimension of the parameter space is usually too large for direct numerical integration and p(θ|D) is concentrated in a small region in the parameter space and only known up to a scaling constant. An adaptive Markov chain Monte Carlo simulation approach is proposed to evaluate the desired integral that is based on the Metropolis-Hastings algorithm and a concept similar to simulated annealing. By carrying out a series of Markov chain simulations with limiting stationary distributions equal to a sequence of intermediate probability densities that converge on p(θ|D), the region of concentration of p(θ|D) is gradually portrayed. The Markov chain samples are used to estimate the desired integral by statistical averaging. The method is illustrated using simulated dynamic test data to update the robust response variance and reliability of a moment-resisting frame for two cases: one where the model is only locally identifiable based on the data and the other where it is unidentifiable.

671 citations

Journal ArticleDOI
TL;DR: In this paper, an adaptive importance sampling methodology is proposed to compute the multidimensional integrals encountered in reliability analysis, which is based on a Markov simulation algorithm due to Metropolis et al.

471 citations

Journal ArticleDOI
TL;DR: A Bayesian probabilistic methodology for structural health monitoring is presented in this paper, where a high likelihood of reduction in model stiffness at a location is taken as a proxy for damage at the corresponding structural location.
Abstract: A Bayesian probabilistic methodology for structural health monitoring is presented. The method uses a sequence of identified modal parameter data sets to compute the probability that continually updated model stiffness parameters are less than a specified fraction of the corresponding initial model stiffness parameters. In this approach, a high likelihood of reduction in model stiffness at a location is taken as a proxy for damage at the corresponding structural location. The concept extends the idea of using as indicators of damage the changes in structural model parameters that are identified from modal parameter data sets when the structure is initially in an undamaged state and then later in a possibly damaged state. The extension is needed, since effects such as variation in the identified modal parameters in the absence of damage, as well as unavoidable model error, lead to uncertainties in the updated model parameters that in practice obscure health assessment. The method is illustrated by simulating on-line monitoring, wherein specified modal parameters are identified on a regular basis and the probability of damage for each substructure is continually updated.

346 citations

Journal ArticleDOI
TL;DR: In this article, a method is presented for efficiently computing small failure probabilities encountered in seismic risk problems involving dynamic analysis, based on a procedure recently developed by the writers called Subset Simulation in which the central idea is that a small failure probability can be expressed as a product of larger conditional failure probabilities.
Abstract: A method is presented for efficiently computing small failure probabilities encountered in seismic risk problems involving dynamic analysis. It is based on a procedure recently developed by the writers called Subset Simulation in which the central idea is that a small failure probability can be expressed as a product of larger conditional failure probabilities, thereby turning the problem of simulating a rare failure event into several problems that involve the conditional simulation of more frequent events. Markov chain Monte Carlo simulation is used to efficiently generate the conditional samples, which is otherwise a nontrivial task. The original version of Subset Simulation is improved by allowing greater flexibility for incorporating prior information about the reliability problem so as to increase the efficiency of the method. The method is an effective simulation procedure for seismic performance assessment of structures in the context of modern performance-based design. This application is illustrated by considering the failure of linear and nonlinear hysteretic structures subjected to uncertain earthquake ground motions. Failure analysis is also carried out using the Markov chain samples generated during Subset Simulation to yield information about the probable scenarios that may occur when the structure fails.

331 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a set simulation approach is proposed to compute small failure probabilities encountered in reliability analysis of engineering systems, which can be expressed as a product of larger conditional failure probabilities by introducing intermediate failure events.

1,890 citations

Journal ArticleDOI
01 Jan 2006
TL;DR: This work reviews the state-of-the-art metamodel-based techniques from a practitioner's perspective according to the role of meetamodeling in supporting design optimization, including model approximation, design space exploration, problem formulation, and solving various types of optimization problems.
Abstract: Computation-intensive design problems are becoming increasingly common in manufacturing industries. The computation burden is often caused by expensive analysis and simulation processes in order to reach a comparable level of accuracy as physical testing data. To address such a challenge, approximation or metamodeling techniques are often used. Metamodeling techniques have been developed from many different disciplines including statistics, mathematics, computer science, and various engineering disciplines. These metamodels are initially developed as “surrogates” of the expensive simulation process in order to improve the overall computation efficiency. They are then found to be a valuable tool to support a wide scope of activities in modern engineering design, especially design optimization. This work reviews the state-of-the-art metamodel-based techniques from a practitioner’s perspective according to the role of metamodeling in supporting design optimization, including model approximation, design space exploration, problem formulation, and solving various types of optimization problems. Challenges and future development of metamodeling in support of engineering design is also analyzed and discussed.Copyright © 2006 by ASME

1,503 citations

07 Apr 2002
TL;DR: An updated review covering the years 1996 2001 will summarize the outcome of an updated review of the structural health monitoring literature, finding that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition.
Abstract: Staff members at Los Alamos National Laboratory (LANL) produced a summary of the structural health monitoring literature in 1995. This presentation will summarize the outcome of an updated review covering the years 1996 2001. The updated review follows the LANL statistical pattern recognition paradigm for SHM, which addresses four topics: 1. Operational Evaluation; 2. Data Acquisition and Cleansing; 3. Feature Extraction; and 4. Statistical Modeling for Feature Discrimination. The literature has been reviewed based on how a particular study addresses these four topics. A significant observation from this review is that although there are many more SHM studies being reported, the investigators, in general, have not yet fully embraced the well-developed tools from statistical pattern recognition. As such, the discrimination procedures employed are often lacking the appropriate rigor necessary for this technology to evolve beyond demonstration problems carried out in laboratory setting.

1,467 citations

Journal ArticleDOI
TL;DR: An iterative approach based on Monte Carlo Simulation and Kriging metamodel to assess the reliability of structures in a more efficient way and is shown to be very efficient as the probability of failure obtained with AK-MCS is very accurate and this, for only a small number of calls to the performance function.

1,234 citations