scispace - formally typeset
Search or ask a question
Author

Siwei Li

Bio: Siwei Li is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Electrocatalyst & Catalysis. The author has an hindex of 12, co-authored 22 publications receiving 498 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed and a proper discussion and perspective of the remaining challenges and future opportunities for plAsmonic nanomaterials and plasMon-related chemistry in the field of energy conversion and storage are given.
Abstract: Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.

216 citations

Journal ArticleDOI
TL;DR: The primary emphasis is device performance of OER-related proton exchange membrane (PEM) electrolyzers, ORR-related PEM fuel cells, NRR-driven ammonia electrosynthesis from water and nitrogen, and AOR-related direct ammonia fuel cells.
Abstract: Clean and efficient energy storage and conversion via sustainable water and nitrogen reactions have attracted substantial attention to address the energy and environmental issues due to the overwhelming use of fossil fuels. These electrochemical reactions are crucial for desirable clean energy technologies, including advanced water electrolyzers, hydrogen fuel cells, and ammonia electrosynthesis and utilization. Their sluggish reaction kinetics lead to inefficient energy conversion. Innovative electrocatalysis, i.e., catalysis at the interface between the electrode and electrolyte to facilitate charge transfer and mass transport, plays a vital role in boosting energy conversion efficiency and providing sufficient performance and durability for these energy technologies. Herein, a comprehensive review on recent progress, achievements, and remaining challenges for these electrocatalysis processes related to water (i.e., oxygen evolution reaction, OER, and oxygen reduction reaction, ORR) and nitrogen (i.e., nitrogen reduction reaction, NRR, for ammonia synthesis and ammonia oxidation reaction, AOR, for energy utilization) is provided. Catalysts, electrolytes, and interfaces between the two within electrodes for these electrocatalysis processes are discussed. The primary emphasis is device performance of OER-related proton exchange membrane (PEM) electrolyzers, ORR-related PEM fuel cells, NRR-driven ammonia electrosynthesis from water and nitrogen, and AOR-related direct ammonia fuel cells.

199 citations

Journal ArticleDOI
TL;DR: In this article, single-phase (α-, β) phase plays a crucial role in enhancing the oxygen evolution reaction (OER) performance of iron oxyhydroxide (FeOOH) materials.
Abstract: The crystalline phase plays a crucial, yet not well-understood, role in enhancing the oxygen evolution reaction (OER) performance of iron oxyhydroxide (FeOOH) materials. Herein, single-phase (α-, β...

189 citations

Journal ArticleDOI
Siqi Niu1, Siwei Li1, Yunchen Du1, Xijiang Han1, Ping Xu1 
TL;DR: In this article, the reference electrode with Pt foil (Aldrich) as both the working and the counter electrodes in a sealed standard three-electrode were calibrated at 1 mV/s and the average of the two interconversion point values was taken to be the thermodynamic potential for the hydrogen evolution reaction.
Abstract: The potential was referred to RHE by calibrating the reference electrode with Pt foil (Aldrich) as both the working and the counter electrodes in a sealed standard three-electrode. Saturate the electrolyte with high-purity hydrogen for at least half an hour before performing electrode calibration. Cyclic voltammograms (CV) were performed at the scan rate of 1 mV/s and the average of the two inter-conversion point values was taken to be the thermodynamic potential for the hydrogen evolution reaction. To investigate the influence of temperature on the correction values of the electrodes, a thermostatic water bath was used to precisely control the temperature of the electrolyte at 20, 25 and 30 oC, respectively.

145 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the authors used electron beams instead of photons to detect plasmons as resonance peaks in the energy-loss spectra of sub-nanometre electron beams rastered on nanoparticles of well-defined geometrical parameters.
Abstract: Understanding how light interacts with matter at the nanometre scale is a fundamental issue in optoelectronics and nanophotonics. In particular, many applications (such as bio-sensing, cancer therapy and all-optical signal processing) rely on surface-bound optical excitations in metallic nanoparticles. However, so far no experimental technique has been capable of imaging localized optical excitations with sufficient resolution to reveal their dramatic spatial variation over one single nanoparticle. Here, we present a novel method applied on silver nanotriangles, achieving such resolution by recording maps of plasmons in the near-infrared/visible/ultraviolet domain using electron beams instead of photons. This method relies on the detection of plasmons as resonance peaks in the energy-loss spectra of subnanometre electron beams rastered on nanoparticles of well-defined geometrical parameters. This represents a significant improvement in the spatial resolution with which plasmonic modes can be imaged, and provides a powerful tool in the development of nanometre-level optics.

803 citations

Journal ArticleDOI
TL;DR: In this article, a cubic framework of amorphous carbon and uniformly dispersed core-shell Fe@graphitic carbon nanoparticles is used to construct a high-performance microwave absorber.
Abstract: Composites of magnetic metal nanoparticles and carbon materials are highly desirable for high-performance microwave absorbers due to their compatible dielectric loss and magnetic loss abilities. In this article, novel nanocomposites, Fe/C nanocubes, have been successfully prepared through an in situ route from a metal–organic framework, Prussian blue, by controlled high-temperature pyrolysis. The resultant nanocubes are actually composed of a cubic framework of amorphous carbon and uniformly dispersed core–shell Fe@graphitic carbon nanoparticles. Within the studied pyrolysis temperature range (600–700 °C), the porous structure, iron content, magnetic properties, and graphitization degree of the Fe/C nanocubes can be well modulated. Particularly, the improved carbon graphitization degree, both in amorphous frameworks and graphitic shells, results in enhanced complex permittivity and dielectric loss properties. The homogeneous chemical composition and microstructure stimulate the formation of multiple dielectric resonances by regularizing various polarizations. The synergistic effect of dielectric loss, magnetic loss, matched impedance, and dielectric resonances accounts for the improved microwave absorption properties of the Fe/C nanocubes. The absorption bands of the optimum one obtained at 650 °C are superior to most composites ever reported. By considering the good chemical homogeneity and microwave absorption, we believe that the as-fabricated Fe/C nanocubes will be promising candidates as highly effective microwave absorbers.

545 citations

Journal ArticleDOI
01 Aug 2016-Carbon
TL;DR: In this paper, a facile one-pot polyol route for the fabrication of CoNi/nitrogen-doped graphene hybrids as synergistic microwave absorber was reported.

337 citations

Journal ArticleDOI
TL;DR: The transition metal-based bimetallic MOFs (TMB MOFs) with two different metal ions possess specific synergistic effects, which could exhibit OER performance and stability superior to those of the corresponding monometallic MOF for water oxidation.
Abstract: The oxygen evolution reaction (OER) is a critical electrochemical reaction in water splitting and rechargeable metal–air batteries. It plays a pivotal role in achieving high-efficiency clean-energy production and energy storage in these devices. Transition metal-based bimetallic MOFs (TMB MOFs) with two different metal ions possess specific synergistic effects, which could exhibit OER performance and stability superior to those of the corresponding monometallic MOFs for water oxidation. Benefiting from the diversity of chemical composition and structural type, TMB MOFs can also serve as precursors and templates to obtain alloy-particle-decorated carbon materials with high surface area, or metal compounds such as bimetallic sulfides, phosphides, and hydroxides with atomic-level mixing of heterometallic elements. These materials with high-density active sites exhibit much improved catalytic activity in the water oxidation reaction. This article aims to review the recent progress with TMB MOFs and their derivatives in relation to applications as electrocatalysts in OER, including analysis of the mechanism of the OER process with the assistance of DFT calculations and in situ or operando techniques.

296 citations

Journal ArticleDOI
TL;DR: In this paper, a brief introduction to graphene-based composites and their electromagnetic absorption properties is given, and two key factors, impedance matching behavior and attenuation ability, are given particular attention.
Abstract: Owing to the fast development of wireless information technologies at the high-frequency range, the electromagnetic interference problem has been of increasing significance and attracting global attention. One key solution for this problem is to develop materials that are able to attenuate the unwanted electromagnetic waves. The desired properties of these materials include low reflection loss value, wide attenuation band, light weight, and low cost. This review gives a brief introduction to graphene-based composites and their electromagnetic absorption properties. The ultimate goal of these graphene absorbers is to achieve a broader effective absorption frequency bandwidth (fE) at a thin coating thickness (d). Representative and popular composite designs, synthesis methods, and electromagnetic energy attenuation mechanisms are summarized in detail. The two key factors, impedance matching behavior and attenuation ability, that determine the electromagnetic behavior of graphene-based materials are given particular attention in this article.

292 citations