scispace - formally typeset
Search or ask a question
Author

Siwei Zhang

Bio: Siwei Zhang is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Population & Mortality rate. The author has an hindex of 49, co-authored 161 publications receiving 21236 citations. Previous affiliations of Siwei Zhang include Chinese Academy of Sciences & Union College.


Papers
More filters
Journal ArticleDOI
TL;DR: Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
Abstract: With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.

13,073 citations

Journal ArticleDOI
TL;DR: The coverage of cancer registration population had a greater increase than that in the last year and the data quality and representativeness are gradually improved, indicating cancer registry is playing an irreplaceable role.
Abstract: Objective: The National Central Cancer Registry (NCCR) collected population-based cancer registration data in 2011 from all cancer registries. National cancer incidence and mortality were compiled and cancer incident new cases and cancer deaths were estimated. Methods: In 2014, there were 234 cancer registries submitted cancer incidence and deaths occurred in 2011. All datasets were checked and evaluated based on the criteria of data quality from NCCR. Total 177 registries’ data were qualified and compiled for cancer statistics in 2011. The pooled data were stratified by area (urban/rural), gender, age group (0, 1-4, 5-9, 10-14…85+) and cancer type. Cancer incident cases and deaths were estimated using age-specific rates and national population in 2011. All incidence and death rates are age-standardized to the 2000 Chinese standard population and Segi’s population expressed per 100,000 persons. Results: All 177 cancer registries (77 in urban and 100 in rural areas) covered 175,310,169 populations (98,341,507 in urban and 76,968,662 in rural areas). The morphology verified cases (MV%) accounting for 70.14% and 2.44% of incident cases were identified through death certifications only (DCO%) with mortality to incidence ratio of 0.63. The estimates of new cancer incident cases and cancer deaths were 3,372,175 and 2,113,048 in 2011, respectively. The incidence rate was 250.28/100,000 (males 277.77/100,000, females 221.37/100,000), and the age-standardized incidence rates by Chinese standard population (ASIRC) and by world standard population (ASIRW) were 186.34/100,000 and 182.76/100,000 with the cumulative incidence rate (0-74 years old) of 21.20%. The cancer incidence and ASIRC in urban areas were 261.38/100,000 and 189.89/100,000 compared to 238.60/100,000 and 182.10/100,000 in rural areas, respectively. The cancer mortality was 156.83/100,000 (194.88/100,000 in males and 116.81/100,000 in females), the age-standardized mortality rates by Chinese standard population (ASMRC) and by world standard population (ASMRW) were 112.88/100,000 and 111.82/100,000, and the cumulative mortality rate (0-74 years old) was 12.69%. The cancer mortality and ASMRC were 154.37/100,000 and 108.20/100,000 in urban areas, and 159.42/100,000 and 117.97/100,000 in rural areas, respectively. Cancers of lung, female breast, stomach, liver, colon and rectum, esophageal, cervix, uterus, prostate and ovary were the most common cancers, accounting for about 75% of all cancer new cases. Lung cancer, liver cancer, stomach cancer, esophageal cancer, colorectal cancer, female breast cancer, pancreatic cancer, brain tumor, cervical cancer and leukemia were the leading causes of cancer death, accounting for about 80% of all cancer deaths. The cancer incidence, mortality and spectrum showed difference between urban and rural areas, males and females. Conclusions: The coverage of cancer registration population had a greater increase than that in the last year. The data quality and representativeness are gradually improved. As the basic work of cancer prevention and control, cancer registry is playing an irreplaceable role. The disease burden of cancer is increasing, and the health department has to take effective measures to contain the increased cancer burden in China.

652 citations

Journal ArticleDOI
TL;DR: Heavy cancer burden and its disparities between area, sex and age group pose a major challenge to public health in China.
Abstract: Background National Central Cancer Registry of China (NCCRC) updated nationwide cancer statistics using population-based cancer registry data in 2014 collected from all available cancer registries. Methods In 2017, 449 cancer registries submitted cancer registry data in 2014, among which 339 registries' data met the criteria of quality control and were included in analysis. These cancer registries covered 288,243,347 population, accounting for about 21.07% of the national population in 2014. Numbers of nationwide new cancer cases and deaths were estimated using calculated incidence and mortality rates and corresponding national population stratified by area, sex, age group and cancer type. The world Segi's population was applied for age-standardized rates. Results A total of 3,804,000 new cancer cases were diagnosed, the crude incidence rate was 278.07/100,000 (301.67/100,000 in males, 253.29/100,000 in females) and the age-standardized incidence rate by world standard population (ASIRW) was 186.53/100,000. Calculated age-standardized incidence rate was higher in urban areas than in rural areas (191.6/100,000 vs. 179.2/100,000). South China had the highest cancer incidence rate while Southwest China had the lowest incidence rate. Cancer incidence rate was higher in female for population between 20 to 54 years but was higher in male for population younger than 20 years or over 54 years. A total of 2,296,000 cancer deaths were reported, the crude mortality rate was 167.89/100,000 (207.24/100,000 in males, 126.54/100,000 in females) and the age-standardized mortality rate by world standard population (ASMRW) was 106.09/100,000. Calculated age-standardized mortality rate was higher in rural areas than in urban areas (110.3/100,000 vs. 102.5/100,000). East China had the highest cancer mortality rate while North China had the lowest mortality rate. The mortality rate in male was higher than that in female. Common cancer types and major causes of cancer death differed between age group and sex. Conclusions Heavy cancer burden and its disparities between area, sex and age group pose a major challenge to public health in China. Nationwide cancer registry plays a crucial role in cancer prevention and control.

631 citations

Journal ArticleDOI
TL;DR: The genome of B. bassiana was sequenced and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity.
Abstract: The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide.

528 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
Abstract: With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.

13,073 citations

Journal ArticleDOI
TL;DR: In a study of 105 patients with cancer and 536 without, all with confirmed COVID-19, cancer was predictive of more severe disease, with stage IV cancer, hematologic cancer, and lung cancer being associated with worse outcomes.
Abstract: The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 is needed. We performed a multicenter study including 105 patients with cancer and 536 age-matched noncancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematologic cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Patients with nonmetastatic cancer experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, whereas patients who underwent only radiotherapy did not demonstrate significant differences in severe events when compared with patients without cancer. These findings indicate that patients with cancer appear more vulnerable to SARS-CoV-2 outbreak. SIGNIFICANCE: Because this is the first large cohort study on this topic, our report will provide much-needed information that will benefit patients with cancer globally. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients.This article is highlighted in the In This Issue feature, p. 747.

1,208 citations