scispace - formally typeset
Search or ask a question
Author

Smita Srivastava

Bio: Smita Srivastava is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Azadirachtin & Hairy root culture. The author has an hindex of 15, co-authored 40 publications receiving 998 citations. Previous affiliations of Smita Srivastava include Indian Institute of Technology Delhi & Indian Institutes of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Activity was maximum over a pH range of 4.5–5.5 but declined sharply beyond 5.5 for both substrates, and marked synergistic activity exists between Trichoderma reesei and A. wentii cellulases for cellulose hydrolysis.

40 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system and a strategy for simultaneous dye removal and increased alpha-tocopherol production by H. annuus hairy root cultures has been proposed and demonstrated.

31 citations

Journal ArticleDOI
TL;DR: B batch cultivation of hairy roots was carried out in gas-phase reactors (nutrient spray and nutrient mist bioreactor) to investigate the possible scale-up of A. indica hairy root culture and the nano-size nutrient mist particles generated from the nozzle of the nutrient mistBioreactor could penetrate till the inner core of the inoculated root matrix, facilitating uniform growth during high-density cultivation of hairs.
Abstract: Azadirachtin, a well-known biopesticide is a secondary metabolite conventionally extracted from the seeds of Azadirachta indica. The present study involved in vitro azadirachtin production by developing hairy roots of A. indica via Agrobacterium rhizogenes-mediated transformation of A. indica explants. Liquid culture of hairy roots was established in shake flask to study the kinetics of growth and azadirachtin production. A biomass production of 13.3 g/L dry weight (specific growth rate of 0.7 day−1) was obtained after 25 days of cultivation period with an azadirachtin yield of 3.3 mg/g root biomass. To overcome the mass transfer limitation in conventionally used liquid-phase reactors, batch cultivation of hairy roots was carried out in gas-phase reactors (nutrient spray and nutrient mist bioreactor) to investigate the possible scale-up of A. indica hairy root culture. The nano-size nutrient mist particles generated from the nozzle of the nutrient mist bioreactor could penetrate till the inner core of the inoculated root matrix, facilitating uniform growth during high-density cultivation of hairy roots. A biomass production of 9.8 g/L dry weight with azadirachtin accumulation of 2.8 mg/g biomass (27.4 mg/L) could be achieved in 25 days of batch cultivation period, which was equivalent to a volumetric productivity of 1.09 mg/L per day of azadirachtin.

30 citations

Journal ArticleDOI
TL;DR: A Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy Roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants.
Abstract: Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.

29 citations

Journal ArticleDOI
TL;DR: The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica by exogenous addition of precursors and elicitors in the growth medium.
Abstract: The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.
Abstract: The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and varying both spatially and temporally along the root. Consequently, the amount and type of rhizodeposits (e.g. exudates, border cells, mucilage) remains highly context specific. This has severely limited our capacity to quantify and model the amount of rhizodeposition in ecosystem processes such as C sequestration and nutrient acquisition. It is now evident that C and N flow at the soil–root interface is bidirectional with C and N being lost from roots and taken up from the soil simultaneously. Here we present four alternative hypotheses to explain why high and low molecular weight organic compounds are actively cycled in the rhizosphere. These include: (1) indirect, fortuitous root exudate recapture as part of the root’s C and N distribution network, (2) direct re-uptake to enhance the plant’s C efficiency and to reduce rhizosphere microbial growth and pathogen attack, (3) direct uptake to recapture organic nutrients released from soil organic matter, and (4) for inter-root and root–microbial signal exchange. Due to severe flaws in the interpretation of commonly used isotopic labelling techniques, there is still great uncertainty surrounding the importance of these individual fluxes in the rhizosphere. Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.

1,247 citations

Journal ArticleDOI
TL;DR: An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology.
Abstract: In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one β-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and β-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future.

1,094 citations

Journal ArticleDOI
Tasiu Isah1
TL;DR: Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Abstract: In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.

618 citations

Journal ArticleDOI
TL;DR: This review emphasizes the importance of costs in industrial-scale treatment of dye wastewater and provides a way to assess the cost-based feasibility of bio-adsorption technologies and discusses the major factors affecting adsorption and desorption performance based on basic chemical and physical structures ofBio-adsorbents available in literatures.

353 citations

Journal ArticleDOI
07 May 2018-Planta
TL;DR: This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.
Abstract: Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.

281 citations