scispace - formally typeset
Search or ask a question
Author

Sofia-Iris Bibli

Bio: Sofia-Iris Bibli is an academic researcher from Goethe University Frankfurt. The author has contributed to research in topics: Ischemia & Enos. The author has an hindex of 12, co-authored 22 publications receiving 436 citations. Previous affiliations of Sofia-Iris Bibli include National and Kapodistrian University of Athens.

Papers
More filters
Journal ArticleDOI
TL;DR: Exposure to e-cig vapor can trigger inflammatory responses and adversely affect respiratory system mechanics and it is concluded that both e- cig vaping and conventional cigarette smoking negatively impact lung biology.
Abstract: Electronic cigarettes (e-cigs) are advertised as a less harmful nicotine delivery system or as a new smoking cessation tool. We aimed to assess the in vivo effects of e-cig vapor in the lung and to...

126 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing and demonstrate a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures.
Abstract: Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network. Endothelial cells play a critical role in the adaptation of tissues to injury and show a remarkable plasticity. Here the authors show, using single cell sequencing, that endothelial cells acquire a transient mesenchymal state associated with metabolic adaptation after myocardial infarction.

113 citations

Journal ArticleDOI
TL;DR: It is shown that revascularization requires a coordinated multi-tissue response culminating with the formation of a complex vascular network available as a scaffold for cardiomyocyte repopulation.

73 citations

Journal ArticleDOI
TL;DR: MANTIS is tightly regulated by the transcription factors KLF2 and KLF4 and limits the ICAM-1 mediated monocyte adhesion to endothelial cells and thus potentially atherosclerosis development in humans.
Abstract: Aims To assess the functional relevance and therapeutic potential of the pro-angiogenic long non-coding RNA MANTIS in vascular disease development. Methods and results RNA sequencing, CRISPR activation, overexpression, and RNAi demonstrated that MANTIS, especially its Alu-element, limits endothelial ICAM-1 expression in different types of endothelial cells. Loss of MANTIS increased endothelial monocyte adhesion in an ICAM-1-dependent manner. MANTIS reduced the binding of the SWI/SNF chromatin remodelling factor BRG1 at the ICAM-1 promoter. The expression of MANTIS was induced by laminar flow and HMG-CoA-reductase inhibitors (statins) through mechanisms involving epigenetic rearrangements and the transcription factors KLF2 and KLF4. Mutation of the KLF binding motifs in the MANTIS promoter blocked the flow-induced MANTIS expression. Importantly, the expression of MANTIS in human carotid artery endarterectomy material was lower compared with healthy vessels and this effect was prevented by statin therapy. Interestingly, the protective effects of statins were mediated in part through MANTIS, which was required to facilitate the atorvastatin-induced changes in endothelial gene expression. Moreover, the beneficial endothelial effects of statins in culture models (spheroid outgrowth, proliferation, telomerase activity, and vascular organ culture) were lost upon knockdown of MANTIS. Conclusion MANTIS is tightly regulated by the transcription factors KLF2 and KLF4 and limits the ICAM-1 mediated monocyte adhesion to endothelial cells and thus potentially atherosclerosis development in humans. The beneficial effects of statin treatment and laminar flow are dependent on MANTIS.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present review characterizes the signalTransduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria, as a highly concerted spatiotemporal program.
Abstract: Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.

666 citations

Journal Article
TL;DR: The hypothesis that omega-3 (omega-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina is advanced.
Abstract: In this work we advance the hypothesis that omega-3 (omega-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. omega-3 LCPUFAs may modulate metabolic processes and attenuate effects of environmental exposures that activate molecules implicated in pathogenesis of vasoproliferative and neurodegenerative retinal diseases. These processes and exposures include ischemia, chronic light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and aging. A number of bioactive molecules within the retina affect, and are effected by such conditions. These molecules operate within complex systems and include compounds classified as eicosanoids, angiogenic factors, matrix metalloproteinases, reactive oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory cytokines, and inflammatory phospholipids. We discuss the relationship of LCPUFAs with these bioactivators and bioactive compounds in the context of three blinding retinal diseases of public health significance that exhibit both vascular and neural pathology. How is omega-3 LCPUFA status related to retinal structure and function? Docosahexaenoic acid (DHA), a major dietary omega-3 LCPUFA, is also a major structural lipid of retinal photoreceptor outer segment membranes. Biophysical and biochemical properties of DHA may affect photoreceptor membrane function by altering permeability, fluidity, thickness, and lipid phase properties. Tissue DHA status affects retinal cell signaling mechanisms involved in phototransduction. DHA may operate in signaling cascades to enhance activation of membrane-bound retinal proteins and may also be involved in rhodopsin regeneration. Tissue DHA insufficiency is associated with alterations in retinal function. Visual processing deficits have been ameliorated with DHA supplementation in some cases. What evidence exists to suggest that LCPUFAs modulate factors and processes implicated in diseases of the vascular and neural retina? Tissue status of LCPUFAs is modifiable by and dependent upon dietary intake. Certain LCPUFAs are selectively accreted and efficiently conserved within the neural retina. On the most basic level, omega-3 LCPUFAs influence retinal cell gene expression, cellular differentiation, and cellular survival. DHA activates a number of nuclear hormone receptors that operate as transcription factors for molecules that modulate reduction-oxidation-sensitive and proinflammatory genes; these include the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and the retinoid X receptor. In the case of PPAR-alpha, this action is thought to prevent endothelial cell dysfunction and vascular remodeling through inhibition of: vascular smooth muscle cell proliferation, inducible nitric oxide synthase production, interleukin-1 induced cyclooxygenase (COX)-2 production, and thrombin-induced endothelin 1 production. Research on model systems demonstrates that omega-3 LCPUFAs also have the capacity to affect production and activation of angiogenic growth factors, arachidonic acid (AA)-based vasoregulatory eicosanoids, and MMPs. Eicosapentaenoic acid (EPA), a substrate for DHA, is the parent fatty acid for a family of eicosanoids that have the potential to affect AA-derived eicosanoids implicated in abnormal retinal neovascularization, vascular permeability, and inflammation. EPA depresses vascular endothelial growth factor (VEGF)-specific tyrosine kinase receptor activation and expression. VEGF plays an essential role in induction of: endothelial cell migration and proliferation, microvascular permeability, endothelial cell release of metalloproteinases and interstitial collagenases, and endothelial cell tube formation. The mechanism of VEGF receptor down-regulation is believed to occur at the tyrosine kinase nuclear factor-kappa B (NFkappaB). NFkappaB is a nuclear transcription factor that up-regulates COX-2 expression, intracellular adhesion molecule, thrombin, and nitric oxide synthase. All four factors are associated with vascular instability. COX-2 drives conversion of AA to a number angiogenic and proinflammatory eicosanoids. Our general conclusion is that there is consistent evidence to suggest that omega-3 LCPUFAs may act in a protective role against ischemia-, light-, oxygen-, inflammatory-, and age-associated pathology of the vascular and neural retina.

665 citations

Journal ArticleDOI
TL;DR: H2S-based signaling via persulfidation and thionitrous acid is discussed and the subversion of enzymes in the cytoplasmic trans-sulfuration pathway for producing H2S from cysteine and/or homocysteine versus producing Cysteine from homocy steine presents an interesting regulatory problem.
Abstract: Significance: Hydrogen sulfide (H2S), produced by the desulfuration of cysteine or homocysteine, functions as a signaling molecule in an array of physiological processes including regulation of vascular tone, the cellular stress response, apoptosis, and inflammation. Recent Advances: The low steady-state levels of H2S in mammalian cells have been recently shown to reflect a balance between its synthesis and its clearance. The subversion of enzymes in the cytoplasmic trans-sulfuration pathway for producing H2S from cysteine and/or homocysteine versus producing cysteine from homocysteine, presents an interesting regulatory problem. Critical Issues: It is not known under what conditions the enzymes operate in the canonical trans-sulfuration pathway and how their specificity is switched to catalyze the alternative H2S-producing reactions. Similarly, it is not known if and whether the mitochondrial enzymes, which oxidize sulfide and persulfide (or sulfane sulfur), are regulated to increase or decrease...

389 citations

Journal ArticleDOI
TL;DR: Hans Erik Bøtker’s aim is to contribute towards the humanizing of cycling in Europe by inspiring and inspiring the next generation of cyclists and runners.
Abstract: The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment.

305 citations

Journal ArticleDOI
TL;DR: The present review will describe the biological effects of oleuropein and hydroxytyrosol, with particular attention on the molecular mechanism underlying the protective action on cardiovascular and metabolic alterations, as demonstrated by in vitro and in vivo experimental studies performed with the isolated compounds.
Abstract: The overall health beneficial action of olive oil phenolic components is well established. Recent studies have elucidated the biological effects of two isolated compounds, namely oleuropein and hydroxytyrosol, with particular attention on their antioxidant activity. Thus, a protective action has been demonstrated in preclinical studies against several diseases, especially cardiovascular and metabolic disorders. The present review will describe the biological effects of oleuropein and hydroxytyrosol, with particular attention on the molecular mechanism underlying the protective action on cardiovascular and metabolic alterations, as demonstrated by in vitro and in vivo experimental studies performed with the isolated compounds.

299 citations