scispace - formally typeset
Search or ask a question
Author

Sojung Kim

Other affiliations: Chungbuk National University
Bio: Sojung Kim is an academic researcher from Seoul National University. The author has contributed to research in topics: Cas9 & CRISPR. The author has an hindex of 12, co-authored 23 publications receiving 5283 citations. Previous affiliations of Sojung Kim include Chungbuk National University.
Topics: Cas9, CRISPR, Genome editing, DNA, RNA

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that complexes of the Cas9 protein and artificial chimeric RNAs efficiently cleave two genomic sites and induce indels with frequencies of up to 33% in human cells.
Abstract: We employ the CRISPR-Cas system of Streptococcus pyogenes as programmable RNA-guided endonucleases (RGENs) to cleave DNA in a targeted manner for genome editing in human cells. We show that complexes of the Cas9 protein and artificial chimeric RNAs efficiently cleave two genomic sites and induce indels with frequencies of up to 33%.

1,893 citations

Journal ArticleDOI
Sojung Kim1, Daesik Kim1, Seung Woo Cho1, Jung-Eun Kim1, Jin-Soo Kim1 
TL;DR: Delivery of purified recombinant Cas9 protein and guide RNA into cultured human cells including hard-to-transfect fibroblasts and pluripotent stem cells is delivered and RGEN ribonucleoproteins (RNPs) induce site-specific mutations at frequencies of up to 79%, while reducing off- target mutations associated with plasmid transfection at off-target sites.
Abstract: RNA-guided engineered nucleases (RGENs) derived from the prokaryotic adaptive immune system known as CRISPR (clustered, regularly interspaced, short palindromic repeat)/Cas (CRISPR-associated) enable genome editing in human cell lines, animals, and plants, but are limited by off-target effects and unwanted integration of DNA segments derived from plasmids encoding Cas9 and guide RNA at both on-target and off-target sites in the genome. Here, we deliver purified recombinant Cas9 protein and guide RNA into cultured human cells including hard-to-transfect fibroblasts and pluripotent stem cells. RGEN ribonucleoproteins (RNPs) induce site-specific mutations at frequencies of up to 79%, while reducing off-target mutations associated with plasmid transfection at off-target sites that differ by one or two nucleotides from on-target sites. RGEN RNPs cleave chromosomal DNA almost immediately after delivery and are degraded rapidly in cells, reducing off-target effects. Furthermore, RNP delivery is less stressful to human embryonic stem cells, producing at least twofold more colonies than does plasmid transfection.

1,526 citations

Journal ArticleDOI
TL;DR: Off-target effects of RGENs can be reduced below the detection limits of deep sequencing by choosing unique target sequences in the genome and modifying both guide RNA and Cas9, and paired nickases induced chromosomal deletions in a targeted manner without causing unwanted translocations.
Abstract: RNA-guided endonucleases (RGENs), derived from the prokaryotic adaptive immune system known as CRISPR/Cas, enable targeted genome engineering in cells and organisms. RGENs are ribonucleoproteins that consist of guide RNA and Cas9, a protein component originated from Streptococcus pyogenes. These enzymes cleave chromosomal DNA, whose sequence is complementary, to guide RNA in a targeted manner, producing site-specific DNA double-strand breaks (DSBs), the repair of which gives rise to targeted genome modifications. Despite broad interest in RGEN-mediated genome editing, these nucleases are limited by off-target mutations and unwanted chromosomal translocations associated with off-target DNA cleavages. Here, we show that off-target effects of RGENs can be reduced below the detection limits of deep sequencing by choosing unique target sequences in the genome and modifying both guide RNA and Cas9. We found that both the composition and structure of guide RNA can affect RGEN activities in cells to reduce off-target effects. RGENs efficiently discriminated on-target sites from off-target sites that differ by two bases. Furthermore, exome sequencing analysis showed that no off-target mutations were induced by two RGENs in four clonal populations of mutant cells. In addition, paired Cas9 nickases, composed of D10A Cas9 and guide RNA, which generate two single-strand breaks (SSBs) or nicks on different DNA strands, were highly specific in human cells, avoiding off-target mutations without sacrificing genome-editing efficiency. Interestingly, paired nickases induced chromosomal deletions in a targeted manner without causing unwanted translocations. Our results highlight the importance of choosing unique target sequences and optimizing guide RNA and Cas9 to avoid or reduce RGEN-induced off-target mutations.

1,332 citations

Journal ArticleDOI
TL;DR: A genome-scale collection of TALENs for efficient and scalable gene targeting in human cells is presented and single- and double-gene-knockout cells in which NF-κB signaling pathways were disrupted showed unambiguous suppression of signal transduction.
Abstract: A collection of TALENs targeted to 18,740 human protein-coding genes will facilitate genetic engineering of human cells.

382 citations

Journal ArticleDOI
TL;DR: It is found that many false-positive, bulge-type off-target sites were cleaved by sgRNAs transcribed from an oligonucleotide duplex but not by those transcribes from a plasmid template.
Abstract: We present multiplex Digenome-seq to profile genome-wide specificities of up to 11 CRISPR-Cas9 nucleases simultaneously, saving time and reducing cost. Cell-free human genomic DNA was digested using multiple sgRNAs combined with the Cas9 protein and then subjected to whole-genome sequencing. In vitro cleavage patterns, characteristic of on- and off-target sites, were computationally identified across the genome using a new DNA cleavage scoring system. We found that many false-positive, bulge-type off-target sites were cleaved by sgRNAs transcribed from an oligonucleotide duplex but not by those transcribed from a plasmid template. Multiplex Digenome-seq captured many bona fide off-target sites, missed by other genome-wide methods, at which indels were induced at frequencies <0.1%. After analyzing 964 sites cleaved in vitro by these sgRNAs and measuring indel frequencies at hundreds of off-target sites in cells, we propose a guideline for the choice of target sites for minimizing CRISPR-Cas9 off-target effects in the human genome.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Abstract: The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.

4,774 citations

Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.

4,361 citations

Journal ArticleDOI
28 Feb 2013-Cell
TL;DR: This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale and can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects.

4,282 citations

Journal ArticleDOI
TL;DR: In this article, the Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing.
Abstract: The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

4,113 citations