scispace - formally typeset
Search or ask a question
Author

Somnath C. Roy

Bio: Somnath C. Roy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Materials science & Thin film. The author has an hindex of 30, co-authored 143 publications receiving 3992 citations. Previous affiliations of Somnath C. Roy include Instituto Superior Técnico & Indian Institute of Technology Kharagpur.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a self-aligned single crystalline GaN array on flexible Ta metal foil using laser molecular beam epitaxy was reported, and the results demonstrate an effective way of fabricating well-aligned GaN nanorods on flexible metal foils for developing simple, relatively inexpensive, and flexible photo-electrodes for photocatalytic solar water splitting applications.

19 citations

Journal ArticleDOI
TL;DR: In this paper, a trinuclear mixed-valent Co(III/II/III) complexes with a different coordination geometry at each cobalt center of a pyrazole derived Schiff base and mononuclear cobalt (III) complex of another pyrazoles containing Schiff base having N-donor atoms have been prepared and structurally characterized.

19 citations

Journal ArticleDOI
TL;DR: In this article , a 2D Ti3C2Tx MXene functionalized TiO2 nanotube arrays (TNTs) were fabricated to achieve enhanced photoelectrochemical (PEC) water splitting.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors applied heavy deformation in a single pass, just above the austenite-to-ferrite (α) transformation temperature, and cooling to room temperature resulted in the formation of UFF grain sizes (average α-grain size ~2 to 3μm), with the largest grain sizes extending up to ~10 to 12μm.
Abstract: Plane-strain compression testing was carried out above, around, and below the A r3 temperature with the deformation temperature, T def, varying between 1323 K and 973 K (1050 °C and 700 °C), using Gleeble 3500, to develop uniform distribution of ultra-fine ferrite (UFF) grains. Prior austenite (γ) grain structure, developed after soaking at 1473 K (1200 °C), was mixed in nature, comprising both coarse- and fine-γ-grain sizes. Applying heavy deformation in a single pass, just above the austenite-to-ferrite (α) transformation temperature (A r3), and cooling to room temperature resulted in the formation of UFF grain sizes (average α-grain size ~2 to 3 μm), with the largest grain sizes extending up to ~10 to 12 μm. Water quenching just after deformation prevented the coarsening of UFF grains and restricted the largest grain sizes to under 6 μm. Although the ferrite grain structures appeared homogeneous in slowly cooled samples (cooling rate (CR) 1 K/s), careful observation revealed the presence of alternate bands of coarse- (5 to 10 μm) and fine-α grains (<1 to 3 μm). The final α-grain size distributions were explained in view of the starting γ-grain size variation, dynamic recrystallization (DRX) of γ, dynamic strain-induced γ-to-α transformation (DSIT), and DRX of α and grain growth during slow cooling. Electron backscattered diffraction analysis (EBSD) revealed the presence of a large fraction (70 to 80 pct) of high-angle boundaries, having misorientation ≥15 deg. Compared to the use of the single, heavy deformation pass, the application of a number of lighter passes between A e3 and A r3 temperatures is more suitable in industrial rolling conditions, and also has the potential of developing UFF grains with high-angle boundaries.

18 citations

Journal ArticleDOI
TL;DR: In this paper, a simple water assisted crystallization process for electrochemically synthesized TiO2 nanotube arrays at room temperature (30 °C) and near-room temperature (50 °C).
Abstract: We report a simple water assisted crystallization process for electrochemically synthesized TiO2 nanotube (TNT) arrays at room temperature (30 °C) and near-room temperature (50 °C). The TNT array samples kept immersed in de-ionized water at room temperature for durations from 1 day to 6 days show a distinct anatase phase confirmed by both X-ray diffraction and transmission electron microscopy. When the process is repeated at an elevated temperature of 50 °C, the crystallization is accelerated with the appearance of an anatase phase within 8 h of treatment. Interestingly, addition of 0.05 M HCl or HNO3 to the DI water during treatment helped in forming the rutile phase of TiO2, along with the dominant anatase phase. By carefully choosing the nanotube parameters (length and diameter) it has been possible to retain the nano-tubular morphology, which is advantageous for applications such as solar cells and gas sensing. Finally, we show the gas sensing and photo-electrochemical characteristics of the DI water crystallized TNT arrays. The samples show good sensitivity and appreciable values of photo-current under the given experimental conditions.

18 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials, and highlights crucial issues that should be addressed in future research activities.
Abstract: Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications. We then examine the design and fabrication of advanced photocatalytic materials in the framework of nanotechnology. Many of the most recent advances in photocatalysis have been realized by selective control of the morphology of nanomaterials or by utilizing the collective properties of nano-assembly systems. Finally, we discuss the current theoretical understanding of key aspects of photocatalytic materials. This review also highlights crucial issues that should be addressed in future research activities.

3,265 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations

Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations