scispace - formally typeset
Search or ask a question
Author

Somnath C. Roy

Bio: Somnath C. Roy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Materials science & Thin film. The author has an hindex of 30, co-authored 143 publications receiving 3992 citations. Previous affiliations of Somnath C. Roy include Instituto Superior Técnico & Indian Institute of Technology Kharagpur.


Papers
More filters
Proceedings ArticleDOI
16 Dec 2008
TL;DR: In this article, the p-type behaviour in undoped SnO2 thin films irradiated with 75 MeV Ni+ ion beam has been reported and attributed to holes generated by these interstitial oxygen ions.
Abstract: We report novel p-type behaviour in undoped SnO2 thin films irradiated with 75 MeV Ni+ ion beam. Gas response of the irradiated films with NH3 (reducing) and NO2 (oxidizing) gases shows an increase and decrease in resistance respectively indicating p-type conduction that also increases with increase in ion fluence. Photoluminescence spectroscopy of the irradiated films shows strong yellow peak corresponding to interstitial oxygen ions. The observed p-type conductivity is attributed to holes generated by these interstitial oxygen ions. Presence of interstitial oxygen ions is also supported by X-ray photoelectron spectroscopy.

2 citations

Journal ArticleDOI
TL;DR: In this article , a Graphical Processing Unit (GPU) accelerated sharp interface Immersed Boundary (IB) method is proposed to predict the flow around arbitrary surfaces of both finite and negligible thicknesses with improved accuracy near the sharp edges.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the works that have been carried out for the enhancement of photocatalytic CO2 conversion by material and structural modification of TiO2 and TiO 2-based photocatalysis system.
Abstract: TiO2 has aroused considerable attentions as a promising photocatalytic material for decades due to its superior material properties in several fields such as energy and environment. However, the main dilemmas are its wide bandgap (3–3.2 eV), that restricts the light absorption in limited light wavelength region, and the comparatively high charge carrier recombination rate of TiO2, is a hurdle for efficient photocatalytic CO2 conversion. To tackle these problems, lots of researches have been implemented relating to structural and material modification to improve their material, optical, and electrical properties for more efficient photocatalytic CO2 conversion. Recent studies illustrate that crystal facet engineering could broaden the performance of the photocatalysts. As same as for nanostructures which have advantages such as improved light absorption, high surface area, directional charge transport, and efficient charge separation. Moreover, strategies such as doping, junction formation, and hydrogenation have resulted in a promoted photocatalytic performance. Such strategies can markedly change the electronic structure that lies behind the enhancement of the solar spectrum harnessing. In this review, we summarize the works that have been carried out for the enhancement of photocatalytic CO2 conversion by material and structural modification of TiO2 and TiO2-based photocatalytic system. Moreover, we discuss several strategies for synthesis and design of TiO2 photocatalysts for efficient CO2 conversion by nanostructure, structure design of photocatalysts, and material modification.

2 citations

Book ChapterDOI
01 Jan 2015
TL;DR: An attempt has been made to reduce the computational time for obtaining numerical solution of heat transfer by conduction, laminar flow in a rectangular channel, lid-driven cavity, and flow past square cylinder by programming GPGPUs using compute unified device architecture (CUDA), while maintaining overall second-order accuracy.
Abstract: Problems in computational mechanics involve higher order nonlinear differential equations with complex boundary conditions, which are difficult to solve analytically and need numerical methods to predict the approximate solution. A large number of mesh points are utilized for better accuracy of the numerical technique which results in storage and operations of a large amount of data. It is of utmost importance that the time taken to perform these calculations is reduced to a realizable scale. General purpose graphical processing units (GPGPUs) provide high number of floating point operations per second (FLOPS) and potentially offer the most efficient architecture to carry out large-scale calculations in computational mechanics. In the present work, an attempt has been made to reduce the computational time for obtaining numerical solution of heat transfer by conduction, laminar flow in a rectangular channel, lid-driven cavity, and flow past square cylinder by programming GPGPUs using compute unified device architecture (CUDA), while maintaining overall second-order accuracy.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials, and highlights crucial issues that should be addressed in future research activities.
Abstract: Semiconductor photocatalysis has received much attention as a potential solution to the worldwide energy shortage and for counteracting environmental degradation. This article reviews state-of-the-art research activities in the field, focusing on the scientific and technological possibilities offered by photocatalytic materials. We begin with a survey of efforts to explore suitable materials and to optimize their energy band configurations for specific applications. We then examine the design and fabrication of advanced photocatalytic materials in the framework of nanotechnology. Many of the most recent advances in photocatalysis have been realized by selective control of the morphology of nanomaterials or by utilizing the collective properties of nano-assembly systems. Finally, we discuss the current theoretical understanding of key aspects of photocatalytic materials. This review also highlights crucial issues that should be addressed in future research activities.

3,265 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations

Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations