scispace - formally typeset
Search or ask a question
Author

Somnath Ghosh

Bio: Somnath Ghosh is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Microstructured optical fiber & Optical fiber. The author has an hindex of 28, co-authored 287 publications receiving 3318 citations. Previous affiliations of Somnath Ghosh include University of Calcutta & Indian Institute of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, variable temperature resistivity measurements and mechanisms related to electrical conduction in 200 keV Ni2+ ion implanted ZnO thin films deposited by vapor phase transport were reported.
Abstract: We report variable temperature resistivity measurements and mechanisms related to electrical conduction in 200 keV Ni2+ ion implanted ZnO thin films deposited by vapor phase transport. The dc electrical resistivity versus temperature curves show that all polycrystalline ZnO films are semiconducting in nature. In the room temperature range they exhibit band conduction and conduction due to thermionic emission of electrons from grain boundaries present in the polycrystalline films. In the low temperature range, nearest neighbor hopping (NNH) and variable range hopping (VRH) conduction are observed. The detailed conduction mechanism of these films and the effects of grain boundary (GB) barriers on the electrical conduction process are discussed. An attempt is made to correlate electrical conduction behavior and previously observed room temperature ferromagnetism of these films.

11 citations

Journal ArticleDOI
TL;DR: In this article, the workability and setting time of ground granulated blast furnace slag paste are investigated, and the major parameters studied were water/binder ratio, alkali content, silicates content, slag/activator ratio, silicate modulus, and sodium silicate/potassium hydroxide ratio.
Abstract: This paper reports the results of an experimental investigation of blast furnace slag paste activated by potassium hydroxide and sodium silicate. Reasonable workability and setting times were maintained. The workability was measured in terms of flow diameter. The loss of flow with time was also studied. The major parameters studied were water/binder ratio, alkali content, silicate content, slag/activator ratio, silicate modulus, and sodium silicate/potassium hydroxide ratio, and their effects on workability and setting time are presented. It was found that the workability and setting time of alkali activated ground granulated blast furnace slag paste are dependent basically on the alkali content, silicate content, and silicate modulus. Locally available blast furnace slag has been utilized, and its potential as source material has been verified. This information will be useful to manufacturers and researchers.

11 citations

Journal ArticleDOI
TL;DR: In this article, a unique synthesis of 9-arylacridines has been achieved by the photolysis of N-aroyldiphenylamines along with carbazole and photomigrated products.

11 citations

Journal ArticleDOI
TL;DR: Control of the interactions is enabled by preparing colloidal molecules from temperature-responsive micro-gel particles whose interactions can be tuned all the way from soft repulsive to short-range attractive through an increase in temperature across the microgels' characteristic volume phase transition temperature (VPTT).
Abstract: Small clusters of spherical colloids that mimic real molecules, so-called colloidal molecules, hold great promise as building blocks in bottom-up routes to new materials. However, their typical hard sphere nature has hampered their assembly into ordered structures, largely due to a lack of control in the interparticle interactions. To provide easy external control of the interactions, the present work focuses on the preparation of colloidal molecules from temperature-responsive microgel particles that undergo a transition from a soft repulsive to a short-range attractive state as their characteristic volume phase transition temperature (VPTT) is crossed. Preparation of the colloidal molecules starts with the use of a droplet-based microfluidics device to form highly uniform water-in-oil (W/O) emulsion droplets containing, on average and with a narrow distribution, four microgels per droplet. Evaporation of the water then leads to the formation of colloidal molecule-like clusters, which can be harvested following cross-linking and phase transfer. We use a mixture of two types of microgels, one based on poly(N-isopropylacrylamide) (PNIPAM) and the other on poly(N-isopropylmethacrylamide) (PNIPMAM), to prepare bicomponent colloidal molecules, and show that the difference in VPTT between the two allows for induction of attractive interparticle interactions between the PNIPAM interaction sites at temperatures in between the two VPTTs, analogous to the interactions among patchy biomacromolecules such as many proteins.

11 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the phase front curvature of an input light beam on the transverse localization of light was investigated in a disordered one-dimensional semi-infinite waveguide lattice.
Abstract: We investigate the influence of the phase front curvature of an input light beam on the transverse localization of light, choosing an evanescently coupled disordered one-dimensional semi-infinite waveguide lattice as an example Our numerical study reveals that a finite phase front curvature of the input beam does indeed play an important role and it could degrade the quality of light localization in a disordered dielectric structure More specifically, a faster transition from the ballistic mode of beam propagation due to diffraction to a characteristic localized state is observed in the case of a continuous wave (CW) beam whose phase front is plane, as compared to one having a curved phase front

11 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
04 Jan 2019-Science
TL;DR: The topic of exceptional points in photonics is reviewed and some of the possible exotic behavior that might be expected from engineering such systems are explored, as well as new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements.
Abstract: BACKGROUND Singularities are critical points for which the behavior of a mathematical model governing a physical system is of a fundamentally different nature compared to the neighboring points. Exceptional points are spectral singularities in the parameter space of a system in which two or more eigenvalues, and their corresponding eigenvectors, simultaneously coalesce. Such degeneracies are peculiar features of nonconservative systems that exchange energy with their surrounding environment. In the past two decades, there has been a growing interest in investigating such nonconservative systems, particularly in connection with the quantum mechanics notions of parity-time symmetry, after the realization that some non-Hermitian Hamiltonians exhibit entirely real spectra. Lately, non-Hermitian systems have raised considerable attention in photonics, given that optical gain and loss can be integrated as nonconservative ingredients to create artificial materials and structures with altogether new optical properties. ADVANCES As we introduce gain and loss in a nanophotonic system, the emergence of exceptional point singularities dramatically alters the overall response, leading to a range of exotic functionalities associated with abrupt phase transitions in the eigenvalue spectrum. Even though such a peculiar effect has been known theoretically for several years, its controllable realization has not been made possible until recently and with advances in exploiting gain and loss in guided-wave photonic systems. As shown in a range of recent theoretical and experimental works, this property creates opportunities for ultrasensitive measurements and for manipulating the modal content of multimode lasers. In addition, adiabatic parametric evolution around exceptional points provides interesting schemes for topological energy transfer and designing mode and polarization converters in photonics. Lately, non-Hermitian degeneracies have also been exploited for the design of laser systems, new nonlinear optics phenomena, and exotic scattering features in open systems. OUTLOOK Thus far, non-Hermitian systems have been largely disregarded owing to the dominance of the Hermitian theories in most areas of physics. Recent advances in the theory of non-Hermitian systems in connection with exceptional point singularities has revolutionized our understanding of such complex systems. In the context of optics and photonics, in particular, this topic is highly important because of the ubiquity of nonconservative elements of gain and loss. In this regard, the theoretical developments in the field of non-Hermitian physics have allowed us to revisit some of the well-established platforms with a new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements. On the experimental front, progress in fabrication technologies has allowed for harnessing gain and loss in chip-scale photonic systems. These theoretical and experimental developments have put forward new schemes for controlling the functionality of micro- and nanophotonic devices. This is mainly based on the anomalous parameter dependence in the response of non-Hermitian systems when operating around exceptional point singularities. Such effects can have important ramifications in controlling light in new nanophotonic device designs, which are fundamentally based on engineering the interplay of coupling and dissipation and amplification mechanisms in multimode systems. Potential applications of such designs reside in coupled-cavity laser sources with better coherence properties, coupled nonlinear resonators with engineered dispersion, compact polarization and spatial mode converters, and highly efficient reconfigurable diffraction surfaces. In addition, the notion of the exceptional point provides opportunities to take advantage of the inevitable dissipation in environments such as plasmonic and semiconductor materials, which play a key role in optoelectronics. Finally, emerging platforms such as optomechanical cavities provide opportunities to investigate exceptional points and their associated phenomena in multiphysics systems.

1,276 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of shape-memory polymers (SMPs) and their derivatives, such as composites and compound structures, as well as their current applications are presented.

1,034 citations

Journal ArticleDOI
19 Apr 2013-Polymer
TL;DR: An up-to-date review on shape memory polymer composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, bionics engineering, energy, electronic engineering, and household products is presented.

981 citations