scispace - formally typeset
Search or ask a question
Author

Somnath Ghosh

Bio: Somnath Ghosh is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Microstructured optical fiber & Optical fiber. The author has an hindex of 28, co-authored 287 publications receiving 3318 citations. Previous affiliations of Somnath Ghosh include University of Calcutta & Indian Institute of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of a quantizing magnetic field on the effective electron mass in degeneraten-type narrow-gap semiconductors at low temperatures was studied. But the effect was limited to the degenerate non-parabolic bands, where the amplitude of oscillations was significantly influenced by the alloy composition.
Abstract: An attempt is made to study the effect of a quantizing magnetic field on the effective electron mass in degeneraten-type narrow-gap semiconductors at low temperatures. It is found, takingn-Hg1−xCdxTe as an example, that the effective electron mass shows an oscillatory magnetic-field dependence as is expected because of the dependence of the effective mass in degenerate non-parabolic bands on Fermi energy which oscillates with changing magnetic field. The amplitude of oscillations is, however, found to be significantly influenced by the alloy composition whereas the period is found to be independent of the band non-parabolicity, i.e. of the compositional parameter in ternary semiconductors.

26 citations

Journal Article
TL;DR: In this paper, the effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers was investigated, and it was shown that the addition of fume significantly enhanced the physico and structural properties of fly ash.
Abstract: This paper presents results of an experimental study performed to investigate effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers. Geopolymer specimens were prepared by activating fly ash incorporated with additional silica fume in the range of 2.5% to 5%, with a mixture of sodium hydroxide and sodium silicate solution having Na2O content of 8%. For studying durability, 10% magnesium sulphate solution was used to immerse the specimens up to a period of 15 weeks during which visual observation, weight changes and strength changes were monitored regularly. Addition of silica fume lowers performance of geopolymer pastes. However, in mortars, addition of silica fume significantly enhanced physico-mechanical properties and durability. Keywords—Fly ash; Silica fume; Geopolymer; Apparent porosity; Sorptivity;compressive strength; durability

26 citations

Journal ArticleDOI
TL;DR: A mild heterogeneous oxidizing agent, cupric bromide has been used for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridine derivatives in excellent yields with the isolation of products by simple work-up procedure.

25 citations

Journal ArticleDOI
TL;DR: In this article, a new synthetic approach for the synthesis of flavones and pyranoflavone was developed by light induced intramolecular photochemical Wittig reaction in water onto aryloxy carbonyl groups and suitably substituted phosphonium bromides without any phase transfer catalyst or promoter.

25 citations

Journal ArticleDOI
TL;DR: In this article, the field emission properties of 3-nm and 10-nm decorated vertically aligned carbon nanotubes (VACNTs) grown on Si substrate before and after oxidation are investigated.

22 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
04 Jan 2019-Science
TL;DR: The topic of exceptional points in photonics is reviewed and some of the possible exotic behavior that might be expected from engineering such systems are explored, as well as new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements.
Abstract: BACKGROUND Singularities are critical points for which the behavior of a mathematical model governing a physical system is of a fundamentally different nature compared to the neighboring points. Exceptional points are spectral singularities in the parameter space of a system in which two or more eigenvalues, and their corresponding eigenvectors, simultaneously coalesce. Such degeneracies are peculiar features of nonconservative systems that exchange energy with their surrounding environment. In the past two decades, there has been a growing interest in investigating such nonconservative systems, particularly in connection with the quantum mechanics notions of parity-time symmetry, after the realization that some non-Hermitian Hamiltonians exhibit entirely real spectra. Lately, non-Hermitian systems have raised considerable attention in photonics, given that optical gain and loss can be integrated as nonconservative ingredients to create artificial materials and structures with altogether new optical properties. ADVANCES As we introduce gain and loss in a nanophotonic system, the emergence of exceptional point singularities dramatically alters the overall response, leading to a range of exotic functionalities associated with abrupt phase transitions in the eigenvalue spectrum. Even though such a peculiar effect has been known theoretically for several years, its controllable realization has not been made possible until recently and with advances in exploiting gain and loss in guided-wave photonic systems. As shown in a range of recent theoretical and experimental works, this property creates opportunities for ultrasensitive measurements and for manipulating the modal content of multimode lasers. In addition, adiabatic parametric evolution around exceptional points provides interesting schemes for topological energy transfer and designing mode and polarization converters in photonics. Lately, non-Hermitian degeneracies have also been exploited for the design of laser systems, new nonlinear optics phenomena, and exotic scattering features in open systems. OUTLOOK Thus far, non-Hermitian systems have been largely disregarded owing to the dominance of the Hermitian theories in most areas of physics. Recent advances in the theory of non-Hermitian systems in connection with exceptional point singularities has revolutionized our understanding of such complex systems. In the context of optics and photonics, in particular, this topic is highly important because of the ubiquity of nonconservative elements of gain and loss. In this regard, the theoretical developments in the field of non-Hermitian physics have allowed us to revisit some of the well-established platforms with a new angle of utilizing gain and loss as new degrees of freedom, in stark contrast with the traditional approach of avoiding these elements. On the experimental front, progress in fabrication technologies has allowed for harnessing gain and loss in chip-scale photonic systems. These theoretical and experimental developments have put forward new schemes for controlling the functionality of micro- and nanophotonic devices. This is mainly based on the anomalous parameter dependence in the response of non-Hermitian systems when operating around exceptional point singularities. Such effects can have important ramifications in controlling light in new nanophotonic device designs, which are fundamentally based on engineering the interplay of coupling and dissipation and amplification mechanisms in multimode systems. Potential applications of such designs reside in coupled-cavity laser sources with better coherence properties, coupled nonlinear resonators with engineered dispersion, compact polarization and spatial mode converters, and highly efficient reconfigurable diffraction surfaces. In addition, the notion of the exceptional point provides opportunities to take advantage of the inevitable dissipation in environments such as plasmonic and semiconductor materials, which play a key role in optoelectronics. Finally, emerging platforms such as optomechanical cavities provide opportunities to investigate exceptional points and their associated phenomena in multiphysics systems.

1,276 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of shape-memory polymers (SMPs) and their derivatives, such as composites and compound structures, as well as their current applications are presented.

1,034 citations

Journal ArticleDOI
19 Apr 2013-Polymer
TL;DR: An up-to-date review on shape memory polymer composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, bionics engineering, energy, electronic engineering, and household products is presented.

981 citations