scispace - formally typeset
Search or ask a question
Author

Sonam Bhargava

Other affiliations: Central University, India
Bio: Sonam Bhargava is an academic researcher from Dr. Hari Singh Gour University. The author has contributed to research in topics: Quantitative structure–activity relationship & HIV-1 protease. The author has an hindex of 6, co-authored 6 publications receiving 140 citations. Previous affiliations of Sonam Bhargava include Central University, India.

Papers
More filters
Journal ArticleDOI
TL;DR: A number of pyrazolo[3,4-d]pyrimidine PDE1 inhibitors were subjected to different molecular modelling techniques to get a detailed knowledge about the physicochemical and structural requirements for higher inhibitory activity.
Abstract: Phosphodiesterase 1 (PDE1) is a potential target for a number of neurodegenerative disorders such as Schizophrenia, Parkinson's and Alzheimer's diseases. A number of pyrazolo[3,4-d]pyrimidine PDE1 inhibitors were subjected to different molecular modelling techniques [such as regression-based quantitative structure-activity relationship (QSAR): multiple linear regression, support vector machine and artificial neural network; classification-based QSAR: Bayesian modelling and Recursive partitioning; Monte Carlo based QSAR; Open3DQSAR; pharmacophore mapping and molecular docking analyses] to get a detailed knowledge about the physicochemical and structural requirements for higher inhibitory activity. The planarity of the pyrimidinone ring plays an important role for PDE1 inhibition. The N-methylated function at the 5th position of the pyrazolo[3,4-d]pyrimidine core is required for interacting with the PDE1 enzyme. The cyclopentyl ring fused with the parent scaffold is necessary for PDE1 binding potency. The phenylamino substitution at 3rd position is crucial for PDE1 inhibition. The N2-substitution at the pyrazole moiety is important for PDE1 inhibition compared to the N1-substituted analogues. Moreover, the p-substituted benzyl side chain at N2-position helps to enhance the PDE1 inhibitory profile. Depending on these observations, some new molecules are predicted that may possess better PDE1 inhibition.

55 citations

Journal ArticleDOI
TL;DR: Four flavonoids (amentoflavone, fisetin, isorhamnetin and theaflavin-3-gallate) have shown higher predicted inhibitory activity and further validated by performing docking analysis and may help in understanding and performing natural flavonoid-based drug discovery against zika virus.

31 citations

Journal ArticleDOI
TL;DR: On the basis of obtained structural attributes, 11 new compounds were designed, out of which five compounds were found to have better activity than the best active compound in the series.
Abstract: Application of HIV-1 protease inhibitors (as an anti-HIV regimen) may serve as an attractive strategy for anti-HIV drug development. Several investigations suggest that there is a crucial need to develop a novel protease inhibitor with higher potency and reduced toxicity. Monte Carlo optimized QSAR study was performed on 200 hydroxyethylamine derivatives with antiprotease activity. Twenty-one QSAR models with good statistical qualities were developed from three different splits with various combinations of SMILES and GRAPH based descriptors. The best models from different splits were selected on the basis of statistically validated characteristics of the test set and have the following statistical parameters: r2 = 0.806, Q2 = 0.788 (split 1); r2 = 0.842, Q2 = 0.826 (split 2); r2 = 0.774, Q2 = 0.755 (split 3). The structural attributes obtained from the best models were analysed to understand the structural requirements of the selected series for HIV-1 protease inhibitory activity. On the basis of obtained structural attributes, 11 new compounds were designed, out of which five compounds were found to have better activity than the best active compound in the series.

27 citations

Journal ArticleDOI
TL;DR: This study may provide important structural aspects of designing new antitrypansomal agents with higher activity and fifteen new compounds bearing thiazol-2-ethylamine scaffold are designed and predicted along with their drug-likeness properties.
Abstract: Background: Thiazol-2-ethylamine is recently reported to be an interesting scaffold having antitrypansomal activity for the treatment of sleeping sickness. Methods: Statistically significant, robust and validated regression-based QSAR models are constructed for a series of antitrypansomal thiazol-2-ethylamines. Moreover, classification-based QSAR analyses (linear discriminant analysis and Bayesian classification modelling) are also performed to identify the important structural features controlling antitrypanosomal activity. Results: Molecular fingerprints such as N-piperidinyl and 2-fluorophenyl functions may be responsible for higher antitrypanosomal activity whereas compounds with chlorophenyl moiety and compounds with unsaturated nitrogen atom possess poor activity. These results are supported by the regression-based QSAR model as well as the SAR observations. Conclusion: Finally, fifteen new compounds bearing thiazol-2-ethylamine scaffold are designed and predicted along with their drug-likeness properties. Therefore, this study may provide important structural aspects of designing new antitrypansomal agents with higher activity.

17 citations

Journal ArticleDOI
TL;DR: Important and crucial structural features have been identified that may be responsible for enhancing the activity profile of these hydroxylamine compounds and may be utilized further in designing promising HIV-1 protease inhibitors of this class.
Abstract: The current study deals with chemometric modelling strategies (Naive Bayes classification, hologram-based quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)) to explore the important features of hydroxylamine derivatives for exerting potent human immunodeficiency virus-1 (HIV-1) protease inhibition. Depending on the statistically validated reliable and robust quantitative structure-activity relationship (QSAR) models, important and crucial structural features have been identified that may be responsible for enhancing the activity profile of these hydroxylamine compounds. Arylsulfonamide function along with methoxy or fluoro substitution is important for enhancing activity. Bulky steric substitution at the sulfonamide nitrogen disfavours activity whereas smaller hydrophobic substitution at the same position is found to be favourable. Apart from the crucial oxazolidinone moiety, pyrrolidine, cyclic urea and methyl ester functions are also responsible for increasing the HIV-1 protease inhibitory profile. Observations derived from these modelling studies may be utilized further in designing promising HIV-1 protease inhibitors of this class.

16 citations


Cited by
More filters
01 Jan 2005
TL;DR: The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS1A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus- induced membranes in virusAssembly.
Abstract: ABSTRACT Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.

189 citations

Journal ArticleDOI
TL;DR: Results supported that this novel compound 16 binds with domains I and II, and the domain II–III linker of the 3CLpro protein, suggesting its suitability as a strong candidate for therapeutic discovery against COVID-19.
Abstract: The novel coronavirus, SARS-CoV-2, has caused a recent pandemic called COVID-19 and a severe health threat around the world. In the current situation, the virus is rapidly spreading worldwide, and the discovery of a vaccine and potential therapeutics are critically essential. The crystal structure for the main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro), was recently made available and is considerably similar to the previously reported SARS-CoV. Due to its essentiality in viral replication, it represents a potential drug target. Herein, a computer-aided drug design (CADD) approach was implemented for the initial screening of 13 approved antiviral drugs. Molecular docking of 13 antivirals against the 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished, and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol. Indinavir possesses an important pharmacophore, hydroxyethylamine (HEA), and thus, a new library of HEA compounds (>2500) was subjected to virtual screening that led to 25 hits with a docking score more than indinavir. Exclusively, compound 16 with a docking score of -8.955 adhered to drug-like parameters, and the structure-activity relationship (SAR) analysis was demonstrated to highlight the importance of chemical scaffolds therein. Molecular dynamics (MD) simulation analysis performed at 100 ns supported the stability of 16 within the binding pocket. Largely, our results supported that this novel compound 16 binds with domains I and II, and the domain II-III linker of the 3CLpro protein, suggesting its suitability as a strong candidate for therapeutic discovery against COVID-19.

79 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the citrus flavanone naringenin (NAR) prevented ZikV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner, and a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKv which could explain the anti-ZIKV activity of NAR.
Abstract: The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.

70 citations

Journal ArticleDOI
07 Jul 2019-Viruses
TL;DR: This study is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoid activities, and identified flavonoids as potential leading compounds for anti- EV71 drug development.
Abstract: Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures; however, to date, there are no reported data on their effects in animal models. In this study, we confirmed the in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in newborn mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.

64 citations

Journal ArticleDOI
TL;DR: The importance of MMP‐2 and HDAC‐8 inhibition in hematological malignancies are focussed for the first time as per the authors' knowledge along with the structure‐activity relationships (SARs) of a handful of molecules have been highlighted that will inspire more interactions between the medicinal chemistry and biology community to harness their expertise in design and discovery of the better acting dual inhibitors in future.

57 citations