scispace - formally typeset
Search or ask a question
Author

Songgang Qiu

Bio: Songgang Qiu is an academic researcher from West Virginia University. The author has contributed to research in topics: Stirling engine & Heat transfer. The author has an hindex of 19, co-authored 82 publications receiving 1332 citations. Previous affiliations of Songgang Qiu include University of Stirling & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically using a transient two-dimensional finite volume based model employing enthalpy-porosity technique.

226 citations

Journal ArticleDOI
TL;DR: By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized.
Abstract: Applying hierarchical cuts to thin sheets of elastomer generates super-stretchable and reconfigurable metamaterials, exhibiting highly nonlinear stress-strain behaviors and tunable phononic bandgaps. The cut concept fails on brittle thin sheets due to severe stress concentration in the rotating hinges. By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized.

151 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode.

115 citations

Journal ArticleDOI
TL;DR: In this paper, a transient three-dimensional finite volume based model was developed to simulate the charging process of phase change material with different configuration of embedded heat pipes, and the melting of the phase change materials was modeled by employing enthalpy-porosity technique.

99 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a cylindrical heat pipe under various operating conditions was experimentally analyzed and the effect of the working fluid fill volume, inclination angle, and heat input on the equivalent thermal resistance of the heat pipe was investigated.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the relationship among structures, materials, properties and applications of auxetic metamaterials and structures is discussed. And the challenges and future work on the topic of auxetics are also presented to inspire prospective research work.
Abstract: Materials and structures with negative Poisson's ratio exhibit a counter-intuitive behaviour. Under uniaxial compression (tension), these materials and structures contract (expand) transversely. The materials and structures that possess this feature are also termed as 'auxetics'. Many desirable properties resulting from this uncommon behaviour are reported. These superior properties offer auxetics broad potential applications in the fields of smart filters, sensors, medical devices and protective equipment. However, there are still challenging problems which impede a wider application of auxetic materials. This review paper mainly focuses on the relationships among structures, materials, properties and applications of auxetic metamaterials and structures. The previous works of auxetics are extensively reviewed, including different auxetic cellular models, naturally observed auxetic behaviour, different desirable properties of auxetics, and potential applications. In particular, metallic auxetic materials and a methodology for generating 3D metallic auxetic materials are reviewed in details. Although most of the literature mentions that auxetic materials possess superior properties, very few types of auxetic materials have been fabricated and implemented for practical applications. Here, the challenges and future work on the topic of auxetics are also presented to inspire prospective research work. This review article covers the most recent progress of auxetic metamaterials and auxetic structures. More importantly, several drawbacks of auxetics are also presented to caution researchers in the future study.

603 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent technologies of thermal energy storage (TES) using phase change materials (PCM) for various applications, particularly concentrated solar thermal power (CSP) generation systems.

503 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of research outcomes and recent technological advancements in the field of inorganic phase change materials is presented while focusing on providing solutions to the associated disadvantages of this class of PCMs.
Abstract: Latent heat energy storage system is one of the promising solutions for efficient way of storing excess thermal energy during low consumption periods. One of the challenges for latent heat storage systems is the proper selection of the phase change materials (PCMs) for the targeted applications. As compared to organic PCMs, inorganic PCMs have some drawbacks, such as corrosion potential and phase separation; however, there are available techniques to overcome or minimize these drawbacks. On the other hand, inorganic PCMs are found to have higher thermal conductivity and storage capacity over organic PCMs. As a result inorganic PCMs have a great potential in thermal energy storage field, especially in medium to high temperature applications where organic PCMs are not a viable option. In this study, a detailed review of research outcomes and recent technological advancements in the field of inorganic phase change materials is presented while focusing on providing solutions to the associated disadvantages of this class of PCMs. Long term stability, thermal cycling performance, and heat transfer enhancements are also discussed in the context of this review.

450 citations

Journal ArticleDOI
TL;DR: This architecture for fluidic artificial muscles with unprecedented performance-to-cost ratio is presented and opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.
Abstract: Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

418 citations

Journal ArticleDOI
TL;DR: A discussion of the strategies in materials innovation and structural design to build soft electronic devices and systems is provided and perspectives on the key challenges and future directions of this field are presented.
Abstract: Soft electronics are intensively studied as the integration of electronics with dynamic nonplanar surfaces has become necessary. Here, a discussion of the strategies in materials innovation and structural design to build soft electronic devices and systems is provided. For each strategy, the presentation focuses on the fundamental materials science and mechanics, and example device applications are highlighted where possible. Finally, perspectives on the key challenges and future directions of this field are presented.

417 citations