scispace - formally typeset
Search or ask a question
Author

Songmin Shang

Bio: Songmin Shang is an academic researcher from Hong Kong Polytechnic University. The author has contributed to research in topics: Fourier transform infrared spectroscopy & Polypyrrole. The author has an hindex of 38, co-authored 141 publications receiving 4952 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results indicate that graphene oxide sheets prefer to disperse well within the nanocomposites, compared with the pure chitosan, the tensile strength, and Young's modulus of the graphene-based materials are significantly improved.
Abstract: Nanocomposites of chitosan and graphene oxide are prepared by simple self-assembly of both components in aqueous media. It is observed that graphene oxide is dispersed on a molecular scale in the chitosan matrix and some interactions occur between chitosan matrix and graphene oxide sheets. These are responsible for efficient load transfer between the nanofiller graphene and chitosan matrix. Compared with the pure chitosan, the tensile strength, and Young's modulus of the graphene-based materials are significantly improved by about 122 and 64%, respectively, with incorporation of 1 wt % graphene oxide. At the same time, the elongation at the break point increases remarkably. The experimental results indicate that graphene oxide sheets prefer to disperse well within the nanocomposites.

682 citations

Journal ArticleDOI
08 Jul 2010-Polymer
TL;DR: In this paper, layer-aligned poly(vinyl alcohol)/graphene nanocomposites in the form of films are prepared by reducing graphite oxide in the polymer matrix in a simple solution processing.

336 citations

Journal ArticleDOI
TL;DR: In this article, an all-fiber wearable electric power nanogenerator, which consists of a PVDF-NaNbO3 nanofiber nonwoven fabric as an active piezoelectric component, and an elastic conducting knitted fabric, made from segmented polyurethane and silver coated polyamide multifilament yarns, as the top and bottom electrodes.
Abstract: Future generations of wearable electronic systems and mobile communication place a great demand for harvesting energy from ambient environments or human movements. Soft fiber-based electric power generators are attractive in meeting the requirements of wearable devices because of efficient energy conversion performance, high durability and comfort. In this paper, we present a novel all-fiber wearable electric power nanogenerator, which consists of a PVDF–NaNbO3 nanofiber nonwoven fabric as an active piezoelectric component, and an elastic conducting knitted fabric, made from segmented polyurethane and silver coated polyamide multifilament yarns, as the top and bottom electrodes. The non-uniform deformation distribution in a compressed nanogenerator device determines the complex operating modes in the piezoelectric nanofiber nonwoven fabric. The nanogenerator consistently produces a peak open-circuit voltage of 3.4 V and a peak current of 4.4 μA in cyclic compression tests at 1 Hz and a maximum pressure of 0.2 MPa, which is comparable to normal human walking motion. More importantly, the all-fiber nanogenerator retains its performance after 1 000 000 compression cycles, demonstrating great promise as a wearable energy harvester that converts the mechanical energy of human movement into electricity.

284 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of proton-conducting hybrid membranes were prepared by in situ cross-linking of a mixture of polymerizable oils containing protic ionic liquids (PILs) and silica nanoparticles or mesoporous silica nanospheres.
Abstract: A new type of proton-conducting hybrid membranes were prepared by in situ cross-linking of a mixture of polymerizable oils containing protic ionic liquids (PILs) and silica nanoparticles or mesoporous silica nanospheres. The resultant hybrid membranes are semitransparent, flexible, and show good thermal stability, good and tunable mechanical properties. Incorporation of proper amount of silica fillers significantly increased the proton conductivity of the membranes, probably due to the ion transport channel or network structures formed in the membranes. However, further addition of silica fillers might block the formed ion transport channels and decrease the conductivity of hybrid membranes. Compared with silica nanoparticles, mesoporous silica nanospheres is more effective in enhancing the conductivity and in preventing the release of ionic liquid component from the composite membranes. Under anhydrous conditions, the produced hybrid membranes show proton conductivity up to the order of 1 × 10−2 S/cm at ...

186 citations

Journal ArticleDOI
TL;DR: In this paper, the carbon dioxide (CO) filled konjac glucomannan (KGM) hydrogel was prepared by using calcium oxide as the crosslinker.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.

3,118 citations

Journal ArticleDOI
07 Jan 2011-Polymer
TL;DR: A survey of the literature on polymer nanocomposites with graphene-based fillers including recent work using graphite nanoplatelet fillers is presented in this article, along with methods for dispersing these materials in various polymer matrices.

2,782 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
Wei Zeng1, Lin Shu1, Qiao Li1, Song Chen1, Fei Wang1, Xiaoming Tao1 
TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Abstract: Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption

1,626 citations