scispace - formally typeset
Search or ask a question
Author

Sonia Fahmy

Bio: Sonia Fahmy is an academic researcher from Purdue University. The author has contributed to research in topics: Asynchronous Transfer Mode & Wireless sensor network. The author has an hindex of 39, co-authored 217 publications receiving 11177 citations. Previous affiliations of Sonia Fahmy include Ohio State University & Hewlett-Packard.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: A protocol is presented, HEED (hybrid energy-efficient distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree, which outperforms weight-based clustering protocols in terms of several cluster characteristics.
Abstract: Prolonged network lifetime, scalability, and load balancing are important requirements for many ad-hoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energy-efficient approach for clustering nodes in ad-hoc sensor networks. Based on this approach, we present a protocol, HEED (hybrid energy-efficient distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED does not make any assumptions about the distribution or density of nodes, or about node capabilities, e.g., location-awareness. The clustering process terminates in O(1) iterations, and does not depend on the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. It also achieves fairly uniform cluster head distribution across the network. A careful selection of the secondary clustering parameter can balance load among cluster heads. Our simulation results demonstrate that HEED outperforms weight-based clustering protocols in terms of several cluster characteristics. We also apply our approach to a simple application to demonstrate its effectiveness in prolonging the network lifetime and supporting data aggregation.

1,373 citations

Posted Content
TL;DR: In this paper, the authors proposed an explicit rate indication scheme for congestion avoidance in ATM networks, where the network switches monitor their load on each link, determining a load factor, the available capacity, and the number of currently active virtual channels.
Abstract: We propose an explicit rate indication scheme for congestion avoidance in ATM networks. In this scheme, the network switches monitor their load on each link, determining a load factor, the available capacity, and the number of currently active virtual channels. This information is used to advise the sources about the rates at which they should transmit. The algorithm is designed to achieve efficiency, fairness, controlled queueing delays, and fast transient response. The algorithm is also robust to measurement errors caused due to variation in ABR demand and capacity. We present performance analysis of the scheme using both analytical arguments and simulation results. The scheme is being implemented by several ATM switch manufacturers.

242 citations

Journal ArticleDOI
TL;DR: In this article, an explicit rate indication for congestion avoidance (ERICA) scheme for rate-based feedback from asynchronous transfer mode (ATM) switches is described. But the scheme is designed to achieve high link utilization with low delays and fast transient response and is also fair and robust to measurement errors caused by the variations in ABR demand and capacity.
Abstract: This paper describes the "explicit rate indication for congestion avoidance" (ERICA) scheme for rate-based feedback from asynchronous transfer mode (ATM) switches. In ERICA, the switches monitor their load on each link and determine a load factor, the available capacity, and the number of currently active virtual channels. This information is used to advise the sources about the rates at which they should transmit. The algorithm is designed to achieve high link utilization with low delays and fast transient response. It is also fair and robust to measurement errors caused by the variations in ABR demand and capacity. We present performance analysis of the scheme using both analytical arguments and simulation results. The scheme is being considered for implementation by several ATM switch manufacturers.

230 citations

Proceedings ArticleDOI
12 May 2002
TL;DR: An application level multicast approach, Topology Aware Grouping (TAG), which exploits underlying network topology information to build efficient overlay networks among multicast group members, with reasonable algorithm time and space complexities is proposed.
Abstract: We propose an application level multicast approach, Topology Aware Grouping (TAG), which exploits underlying network topology information to build efficient overlay networks among multicast group members. TAG uses information about path overlap among members to construct a tree that reduces the overlay relative delay penalty, and reduces the number of duplicate copies of a packet on the same link. We study the properties of TAG, and model and experiment with its economies of scale factor to quantify its benefits compared to unicast and IP multicast. We also compare the TAG approach with the ESM approach in a variety of simulation configurations including a number of real Internet topologies and generated topologies. Our results indicate the effectiveness of the algorithm in reducing delays and duplicate packets, with reasonable algorithm time and space complexities.

212 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations

Journal ArticleDOI
TL;DR: A taxonomy and general classification of published clustering schemes for WSNs is presented, highlighting their objectives, features, complexity, etc and comparing of these clustering algorithms based on metrics such as convergence rate, cluster stability, cluster overlapping, location-awareness and support for node mobility.

2,283 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations