scispace - formally typeset
Search or ask a question
Author

Sonia Fahmy

Bio: Sonia Fahmy is an academic researcher from Purdue University. The author has contributed to research in topics: Asynchronous Transfer Mode & Wireless sensor network. The author has an hindex of 39, co-authored 217 publications receiving 11177 citations. Previous affiliations of Sonia Fahmy include Ohio State University & Hewlett-Packard.


Papers
More filters
Proceedings ArticleDOI
12 Oct 1998
TL;DR: In this article, the authors study the design and analysis of several queue control functions: the step, linear, hyperbolic and inverse Hyperbolic functions, and they conclude that the inverse HHB is the best queue control function.
Abstract: The ABR rate allocation schemes can achieve high link utilizations by maintaining non-zero (small) queues in the steady state, and draining queues when the sources do not have data to send. The queue length (and queuing delays) can be controlled if part of the available bandwidth is used for draining queues in the event of queue build up. A simple threshold function can allocate such bandwidth to drain queues. Better control of the queues, and hence delay, can be achieved using more sophisticated queue control functions. We study the design and analysis of several such queue control functions: the step, linear, hyperbolic and inverse hyperbolic functions. Analytical explanation and simulation results consistent with analysis are presented. From the study, we conclude that the inverse hyperbolic is the best queue control function. To reduce complexity, the linear function can be used since it performs satisfactorily in most cases.

15 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: In this article, the authors proposed an energy-efficient provenance transmission and construction scheme, which refer to as Probabilistic Provenance Flow (PPF), which is the first approach to make the probabilistic packet Marking (PPM) approach of IP traceback feasible for sensor networks.
Abstract: Large-scale sensor-based decision support systems are being widely deployed. Assessing the trustworthiness of sensor data and the owners of this data is critical for quality assurance of decision making in these systems. Trust evaluation frameworks use data provenance along with the sensed data values to compute the trustworthiness of each data item. However, in a sizeable multi-hop sensor network, provenance information requires a large and variable number of bits in each packet, which, in turn, results in high energy dissipation with extended period of radio communication, making trust systems unusable. We propose an energy-efficient provenance transmission and construction scheme, which we refer to as Probabilistic Provenance Flow (PPF). To the best of our knowledge, ours is the first approach to make the Probabilistic Packet Marking (PPM) approach of IP traceback feasible for sensor networks. We propose two bit-efficient complementary provenance encoding and construction methods, and combine them to handle topological changes in the network. Our TOSSIM simulations demonstrate that PPF requires at least 33% fewer packets and consumes 30% less energy than PPM-based approaches to construct provenance, yet still provides high accuracy in trust score calculation. 1

15 citations

06 Aug 2007
TL;DR: The following automation tools were developed: the Experimenter's Workbench that provides a graphical user interface, tools for topology, traffic and monitoring setup and tools for statistics collection, visualization and processing, and a DDoS benchmark suite that contains a set of diverse and comprehensive attack scenarios.
Abstract: While the DETER testbed provides a safe environment and basic tools for security experimentation, researchers face a significant challenge in assembling the testbed pieces and tools into realistic and complete experimental scenarios. In this paper, we describe our work on automating experimentation for distributed denial-of-service attacks. We developed the following automation tools: (1) the Experimenter's Workbench that provides a graphical user interface, tools for topology, traffic and monitoring setup and tools for statistics collection, visualization and processing, (2) a DDoS benchmark suite that contains a set of diverse and comprehensive attack scenarios, (3) the Experiment Generator that combines chosen AS-level and edge-level topologies, legitimate traffic and a set of attacks into DETER-compatible scripts. Jointly, these tools facilitate easy experimentation even for novice users.

15 citations

Journal ArticleDOI
Sonia Fahmy1, Raj Jain1, S. Rabie2, Rohit Goyal1, Bobby Vandalore1 
TL;DR: The ATM available bit rate (ABR) service provides a good synergy with the emerging Internet technologies for supporting end-to-end QoS and can guarantee quality of service and minimize queuing delay and loss in the backbone.

15 citations

Proceedings ArticleDOI
11 Oct 1998
TL;DR: This work studies the effect of VBR carrying long-range dependent, multiplexed MPEG-2 video sources traffic on ABR carrying TCP traffic, and finds that a switch algorithm like ERICA+ can tolerate this variance in ABR capacity while maintaining high throughput and low delay.
Abstract: Compressed video is well known to be self-similar in nature. We model VBR carrying long-range dependent, multiplexed MPEG-2 video sources traffic. The actual traffic for the model is generated using fast-Fourier transform of the fractional Gaussian noise sequence. Our model of compressed video sources bears similarity to an MPEG-2 transport stream carrying video, i.e., it is long-range dependent and generates traffic in a piecewise constant bit rate manner. We study, the effect of such VBR traffic on ABR carrying TCP traffic. The effect of such VBR traffic is that the ABR capacity is highly variant. We find that a switch algorithm like ERICA+ can tolerate this variance in ABR capacity while maintaining high throughput and low delay. We present simulation results for terrestrial and satellite configurations.

14 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations

Journal ArticleDOI
TL;DR: A taxonomy and general classification of published clustering schemes for WSNs is presented, highlighting their objectives, features, complexity, etc and comparing of these clustering algorithms based on metrics such as convergence rate, cluster stability, cluster overlapping, location-awareness and support for node mobility.

2,283 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations