scispace - formally typeset
Search or ask a question
Author

Soo-In Lee

Bio: Soo-In Lee is an academic researcher from Rural Development Administration. The author has contributed to research in topics: Brassica rapa & Gene. The author has an hindex of 3, co-authored 4 publications receiving 391 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.
Abstract: Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.

201 citations

Journal ArticleDOI
TL;DR: With the isolation and further characterization of the endogenous genes, health‐beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.
Abstract: Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72–94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.

110 citations

Journal Article
TL;DR: A new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.
Abstract: Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold (4 degrees C), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.

108 citations

Journal ArticleDOI
TL;DR: The differences in gene structure and expression between the eight BrCYS genes suggest that these proteins may play diverse physiological roles in B. rapa and may interact with cysteine peptidases through different mechanisms.
Abstract: Phytocystatins, which are inhibitors of plant cysteine peptidases, are involved in the regulation of protein turnover and in the defense against insect pests and pathogens. Extensive searches in the Brassica rapa genome allowed the prediction of at least eight different phytocystatin genes on seven chromosomes in the B. rapa genome. Structure comparisons based on alignments of the all BrCYS (. ) proteins using the CLUSTALW program revealed conservation of the three consensus motifs known to interact with the active site of cysteine peptidases. According to the phylogenetic analysis based on the deduced amino acid sequences, the eight BrCYS proteins were divided into several clusters related to the orthologous phytocystatin. The predicted three-dimensional structure models of the eight BrCYS proteins demonstrate that all of these proteins are similar to the reported crystal structure of oryzacystatin-I (OC-I). Digital northern and RT-PCR analyses indicated that the eight BrCYS genes exhibit different expression patterns in B. rapa tissues and respond differently to abiotic stimuli. The differences in gene structure and expression between the eight BrCYS genes suggest that these proteins may play diverse physiological roles in B. rapa and may interact with cysteine peptidases through different mechanisms.

4 citations

Journal ArticleDOI
21 Oct 2022-PLOS ONE
TL;DR: In this paper , the feasibility of Myzus persicae proliferation through interrelationships with host plants in a smart farm facility during winter was examined, and the average number of aphids was greater under the 1:1 red:blue light irradiation time ratio, where the photosynthetic rate of the host plant was lower than under the 5:1 and 10:1 RED:BLI time ratios.
Abstract: In this study, we examined the feasibility of Myzus persicae proliferation through interrelationships with host plants in a smart farm facility during winter. We investigated aphid proliferation under an LED artificial light source and attempted to interpret aphid proliferation in relation to the net photosynthetic rate of the host plant, Eutrema japonicum. We observed that aphids continuously proliferated in the smart farm facility in winter without dormancy. The average number of aphids was greater under the 1:1 red:blue light irradiation time ratio, where the photosynthetic rate of the host plant was lower than under the 5:1 and 10:1 red:blue light irradiation time ratios. These results show that it is important to maintain a low net photosynthetic rate of the host plant, E. japonicum, in order to effectively proliferate aphids under artificial light such as in the case of smart farm facilities.

Cited by
More filters
Journal ArticleDOI
Xiaowu Wang1, Hanzhong Wang, Jun Wang2, Jun Wang3, Jun Wang4, Rifei Sun, Jian Wu, Shengyi Liu, Yinqi Bai2, Jeong-Hwan Mun5, Ian Bancroft6, Feng Cheng, Sanwen Huang, Xixiang Li, Wei Hua, Junyi Wang2, Xiyin Wang7, Xiyin Wang8, Michael Freeling9, J. Chris Pires10, Andrew H. Paterson7, Boulos Chalhoub, Bo Wang2, Alice Hayward11, Alice Hayward12, Andrew G. Sharpe13, Beom-Seok Park5, Bernd Weisshaar14, Binghang Liu2, Bo Li2, Bo Liu, Chaobo Tong, Chi Song2, Chris Duran15, Chris Duran11, Chunfang Peng2, Geng Chunyu2, Chushin Koh13, Chuyu Lin2, David Edwards11, David Edwards15, Desheng Mu2, Di Shen, Eleni Soumpourou6, Fei Li, Fiona Fraser6, Gavin C. Conant10, Gilles Lassalle16, Graham J.W. King3, Guusje Bonnema17, Haibao Tang9, Haiping Wang, Harry Belcram, Heling Zhou2, Hideki Hirakawa, Hiroshi Abe, Hui Guo7, Hui Wang, Huizhe Jin7, Isobel A. P. Parkin18, Jacqueline Batley12, Jacqueline Batley11, Jeong-Sun Kim5, Jérémy Just, Jianwen Li2, Jiaohui Xu2, Jie Deng, Jin A Kim5, Jingping Li7, Jingyin Yu, Jinling Meng19, Jinpeng Wang8, Jiumeng Min2, Julie Poulain20, Katsunori Hatakeyama, Kui Wu2, Li Wang8, Lu Fang, Martin Trick6, Matthew G. Links18, Meixia Zhao, Mina Jin5, Nirala Ramchiary21, Nizar Drou22, Paul J. Berkman15, Paul J. Berkman11, Qingle Cai2, Quanfei Huang2, Ruiqiang Li2, Satoshi Tabata, Shifeng Cheng2, Shu Zhang2, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong Sun, Soo-Jin Kwon5, Su-Ryun Choi21, Tae-Ho Lee7, Wei Fan2, Xiang Zhao2, Xu Tan7, Xun Xu2, Yan Wang, Yang Qiu, Ye Yin2, Yingrui Li2, Yongchen Du, Yongcui Liao, Yong Pyo Lim21, Yoshihiro Narusaka, Yupeng Wang8, Zhenyi Wang8, Zhenyu Li2, Zhiwen Wang2, Zhiyong Xiong10, Zhonghua Zhang 
TL;DR: The annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage, and used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution.
Abstract: We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

1,811 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations

Journal ArticleDOI
29 Nov 2012-Nature
TL;DR: It is shown that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments.
Abstract: Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.

1,017 citations

Journal ArticleDOI
TL;DR: A draft genome sequence of Brassica oleracea is described, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks.
Abstract: Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear Brassica is an ideal model to increase knowledge of polyploid evolution Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B oleracea This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus

884 citations

Journal ArticleDOI
TL;DR: The current knowledge of plant salt tolerance is reviewed and the extent to which expression profiling has helped, or will help, a better understanding of the genetic basis of plant Salt tolerance is discussed.
Abstract: Soil salinity is among the leading environmental stresses affecting global agriculture, causing billions of dollars in crop damages every year. Regardless of the cause, ion toxicity, water deficit, or nutritional imbalance, high salinity in the root zone severely impedes normal plant growth and development, resulting in reduced crop productivity or crop failure. Development of salt-tolerant cultivars is an attractive and economical approach to solving this problem. Although several salt-tolerant plant genotypes have been developed through transgenic approaches, often they have failed or exhibited limited success under field saline conditions. This is due to several reasons, including the fact that plant growth and development under saline conditions in the field is often influenced by cumulative effects of multiple environmental stresses and genetic factors, which may not have been considered during the development of salt-tolerant transgenic plants. Adoption of inappropriate screening techniques or selec...

573 citations