scispace - formally typeset
Search or ask a question
Author

Sophie Godin-Beekmann

Bio: Sophie Godin-Beekmann is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Stratosphere & Ozone layer. The author has an hindex of 31, co-authored 102 publications receiving 2967 citations. Previous affiliations of Sophie Godin-Beekmann include Pierre-and-Marie-Curie University & Alfred Wegener Institute for Polar and Marine Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The pyroCb is a fire-started or fire-augmented thunderstorm that in its most extreme manifestation injects huge abundances of smoke and other biomass-burning emissions into the lower stratosphere.
Abstract: Wildfire is becoming the focus of increasing attention. It is now realized that changes in the occurrence frequency and intensity of wildfires has important significant consequences for a variety of important problems, including atmospheric change and safety in the urban–wildland interface. One important but poorly understood aspect of wildfire behavior—pyrocumulonimbus firestorm dynamics and atmospheric impact—has a curious history of theory and observation. The “pyroCb” is a fire-started or fire-augmented thunderstorm that in its most extreme manifestation injects huge abundances of smoke and other biomass-burning emissions into the lower stratosphere. The observed hemispheric spread of smoke and other biomass-burning emissions could have important climate consequences. PyroCbs have been spawned naturally and through anthropogenesis, and they are hypothesized as being part of the theoretical “Nuclear nuclear winter” work. However, direct attribution of the stratospheric aerosols to the pyroCb only occur...

257 citations

Journal ArticleDOI
TL;DR: In this article, the Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species, and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds.
Abstract: [1] The Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species. We show that chemical loss of column ozone (ΔO3) and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds (VPSC) both exceed levels found for any other Arctic winter during the past 40 years. Cold conditions and ozone loss in the lowermost Arctic stratosphere (e.g., between potential temperatures of 360 to 400 K) were particularly unusual compared to previous years. Measurements indicate ΔO3 = 121 ± 20 DU and that ΔO3 versus VPSC lies along an extension of the compact, near linear relation observed for previous Arctic winters. The maximum value of VPSC during five to ten year intervals exhibits a steady, monotonic increase over the past four decades, indicating that the coldest Arctic winters have become significantly colder, and hence are more conducive to ozone depletion by anthropogenic halogens.

160 citations

Journal ArticleDOI
TL;DR: The EU CANDIDOZ project as mentioned in this paper investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere and found an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase.
Abstract: The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC) which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes) playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds). Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent years are also considered, namely the tendency for cold winters to become colder.

137 citations

Journal ArticleDOI
E. Dupuy1, Kaley A. Walker1, Kaley A. Walker2, J. Kar2, C. D. Boone1, C. T. McElroy3, C. T. McElroy2, Peter F. Bernath4, Peter F. Bernath1, James R. Drummond5, James R. Drummond2, R. Skelton1, Sean D. McLeod1, Ryan Hughes1, Caroline R. Nowlan2, Denis Dufour, J. Zou2, F. Nichitiu2, Kimberly Strong2, Philippe Baron6, Richard M. Bevilacqua7, T. Blumenstock8, Greg Bodeker9, Tobias Borsdorff, Adam Bourassa10, Heinrich Bovensmann11, I. S. Boyd12, Astrid Bracher11, Colette Brogniez13, John P. Burrows11, Valéry Catoire14, Simone Ceccherini15, Simon Chabrillat16, T. Christensen17, M. T. Coffey18, Ugo Cortesi15, Jonathan Davies3, C. de Clercq16, D. A. Degenstein10, M. De Mazière16, P. Demoulin19, J. Dodion16, B. J. Firanski3, Herbert Fischer8, G. Forbes3, Lucien Froidevaux20, Didier Fussen16, P. Gerard16, Sophie Godin-Beekmann21, Florence Goutail13, José Granville16, David W. T. Griffith22, Craig S. Haley23, James W. Hannigan18, Michael Höpfner8, J. J. Jin23, Ashley Jones24, Nicholas B. Jones22, Kenneth W. Jucks25, A. Kagawa6, A. Kagawa26, Yasuko Kasai6, T. E. Kerzenmacher2, Armin Kleinböhl11, Armin Kleinböhl20, Andrew R. Klekociuk27, I. Kramer8, H. Küllmann11, Jayanarayanan Kuttippurath21, Jayanarayanan Kuttippurath11, Erkki Kyrölä28, Jean-Christopher Lambert16, Nathaniel J. Livesey20, E. J. Llewellyn10, Nicholas D. Lloyd10, Emmanuel Mahieu19, Gloria L. Manney20, Gloria L. Manney29, B.T. Marshall, J. C. McConnell23, M. P. McCormick30, I. S. McDermid31, Martin McHugh, Chris A. McLinden3, Johan Mellqvist24, Kohei Mizutani6, Yasuhiro Murayama6, Donal P. Murtagh24, Hermann Oelhaf8, Alan Parrish12, S. V. Petelina32, S. V. Petelina10, C. Piccolo33, Jean-Pierre Pommereau13, Cora E. Randall34, Claude Robert14, Chris Roth10, Matthias Schneider8, C. Senten16, T. Steck8, A. Strandberg24, Kevin Strawbridge3, Ralf Sussmann, D. P. J. Swart, David W. Tarasick3, Jeffrey R. Taylor2, C. Tétard13, Larry W. Thomason30, Anne M. Thompson35, M.B. Tully36, Jakub Urban24, Filip Vanhellemont16, Corinne Vigouroux16, T. von Clarmann8, P. von der Gathen37, C. von Savigny11, Joe W. Waters20, Jacquelyn C. Witte38, M. A. Wolff2, Joseph M. Zawodny30 
TL;DR: In this article, a bias determination of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument is presented.
Abstract: This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

137 citations

Journal ArticleDOI
TL;DR: In this article, validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data are presented.
Abstract: We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by A`20% at middle to high latitude, although there is a lot of variability in this altitude region. Comparisons between MLS and ground-based lidar measurements from Mauna Loa, Hawaii, from the Table Mountain Facility, California, and from the Observatoire de Haute-Provence, France, give very good agreement, within A`5%, for the stratospheric values. The comparisons between MLS and the Table Mountain Facility tropospheric ozone lidar show that MLS data are biased high by A`30% at 215 hPa, consistent with that indicated by the ozonesonde data. We obtain better global average agreement between MLS and ozonesonde partial column values down to 215 hPa, although the average MLS values at low to middle latitudes are higher than the ozonesonde values by up to a few percent. MLS v2.2 ozone data agree better than the MLS v1.5 data with ozonesonde and lidar measurements. MLS tropical data show the wave one longitudinal pattern in the upper troposphere, with similarities to the average distribution from ozonesondes. High upper tropospheric ozone values are also observed by MLS in the tropical Pacific from June to November.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models and takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.
Abstract: Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a by-product of the very oxidation chemistry it largely initiates. Much effort is focussed on the reduction of surface levels of ozone owing to its health impacts but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve due to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate-change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.

877 citations

Journal ArticleDOI
27 Oct 2011-Nature
TL;DR: It is demonstrated that chemical ozone destruction over the Arctic in early 2011 was—for the first time in the observational record—comparable to that in the Antarctic ozone hole.
Abstract: Chemical ozone destruction occurs over both polar regions in local winter–spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was—for the first time in the observational record—comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18–20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded. Since its emergence in the 1980s, the Antarctic ozone hole, the near-complete loss of lower-stratospheric ozone, has occurred every year. The possibility that a similar effect might occur in the Northern Hemisphere has been debated, but despite considerable variation in ozone levels in the Arctic, they had not reached the extremes seen in the south. Until this year. Observations made in the late winter and early spring of 2011 reveal ozone loss far outside the range previously observed over the Northern Hemisphere, comparable to some Antarctic ozone holes. The formation of the hole was driven by an unusually long cold snap and a high level of ozone-destroying chlorine. Although this effect is dramatic, it is difficult to predict whether similar Arctic ozone holes will develop in future.

597 citations

Journal ArticleDOI
TL;DR: The Montreal Protocol is working as mentioned in this paper and ozone depletion is now decreasing, and the decline in total column amounts seen in the 1980s and 1990s at mid-latitudes has not continued.
Abstract: The Montreal Protocol is working. Concentrations of major ozone-depleting substances in the atmosphere are now decreasing, and the decline in total column amounts seen in the 1980s and 1990s at mid-latitudes has not continued. In polar regions, there is much greater natural variability. Each spring, large ozone holes continue to occur in Antarctica and less severe regions of depleted ozone continue to occur in the Arctic. There is evidence that some of these changes are driven by changes in atmospheric circulation rather than being solely attributable to reductions in ozone-depleting substances, which may indicate a linkage to climate change. Global ozone is still lower than in the 1970s and a return to that state is not expected for several decades. As changes in ozone impinge directly on UV radiation, elevated UV radiation due to reduced ozone is expected to continue over that period. Long-term changes in UV-B due to ozone depletion are difficult to verify through direct measurement, but there is strong evidence that UV-B irradiance increased over the period of ozone depletion. At unpolluted sites in the southern hemisphere, there is some evidence that UV-B irradiance has diminished since the late 1990s. The availability and temporal extent of UV data have improved, and we are now able to evaluate the changes in recent times compared with those estimated since the late 1920s, when ozone measurements first became available. The increases in UV-B irradiance over the latter part of the 20th century have been larger than the natural variability. There is increased evidence that aerosols have a larger effect on surface UV-B radiation than previously thought. At some sites in the Northern Hemisphere, UV-B irradiance may continue to increase because of continuing reductions in aerosol extinctions since the 1990s. Interactions between ozone depletion and climate change are complex and can be mediated through changes in chemistry, radiation, and atmospheric circulation patterns. The changes can be in both directions: ozone changes can affect climate, and climate change can affect ozone. The observational evidence suggests that stratospheric ozone (and therefore UV-B) has responded relatively quickly to changes in ozone-depleting substances, implying that climate interactions have not delayed this process. Model calculations predict that at mid-latitudes a return of ozone to pre-1980 levels is expected by the mid 21st century. However, it may take a decade or two longer in polar regions. Climate change can also affect UV radiation through changes in cloudiness and albedo, without involving ozone and since temperature changes over the 21st century are likely to be about 5 times greater than in the past century. This is likely to have significant effects on future cloud, aerosol and surface reflectivity. Consequently, unless strong mitigation measures are undertaken with respect to climate change, profound effects on the biosphere and on the solar UV radiation received at the Earth's surface can be anticipated. The future remains uncertain. Ozone is expected to increase slowly over the decades ahead, but it is not known whether ozone will return to higher levels, or lower levels, than those present prior to the onset of ozone depletion in the 1970s. There is even greater uncertainty about future UV radiation, since it will be additionally influenced by changes in aerosols and clouds.

588 citations

Journal ArticleDOI
TL;DR: The Michelson Interferometer for Pas- sive Atmospheric Sounding (MIPAS) is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT as mentioned in this paper.
Abstract: MIPAS, the Michelson Interferometer for Pas- sive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to verti- cal temperature, trace species and cloud distributions. These data can be used for scientific investigations in various re- search fields including dynamics and chemistry in the alti- tude region between upper troposphere and lower thermo- sphere. The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in de- tail and random and systematic errors are specified. The re- sults are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it

562 citations

Journal ArticleDOI
12 Aug 2011-Science
TL;DR: An increase in the amount of aerosols in the stratosphere during the past decade has decreased the rate of global warming, and climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades.
Abstract: Recent measurements demonstrate that the “background” stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about –0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about –0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.

502 citations