scispace - formally typeset
Search or ask a question
Author

Sophie Ravel

Bio: Sophie Ravel is an academic researcher from Institut de recherche pour le développement. The author has contributed to research in topics: Population & Tsetse fly. The author has an hindex of 27, co-authored 67 publications receiving 1940 citations. Previous affiliations of Sophie Ravel include Centre de coopération internationale en recherche agronomique pour le développement & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
Junichi Watanabe1, Masahira Hattori1, Matthew Berriman2, Michael J. Lehane3, Neil Hall4, Neil Hall5, Philippe Solano6, Serap Aksoy7, Winston Hide8, Winston Hide9, Yeya T. Touré10, Geoffrey M. Attardo7, Alistair C. Darby5, Atsushi Toyoda11, Christiane Hertz-Fowler2, Denis M. Larkin12, James Cotton2, Mandy Sanders2, Martin T. Swain12, Michael A. Quail2, Noboru Inoue13, Sophie Ravel6, Todd D. Taylor, Tulika P. Srivastava14, Vineet K. Sharma15, Wesley C. Warren16, Richard K. Wilson16, Yutaka Suzuki1, Daniel Lawson, Daniel S.T. Hughes, Karyn Megy, Daniel K. Masiga17, Paul O. Mireji18, Immo A. Hansen19, Jan Van Den Abbeele20, Joshua B. Benoit21, Joshua B. Benoit7, Kostas Bourtzis22, Kostas Bourtzis23, Kostas Bourtzis24, George F. Obiero9, George F. Obiero17, Hugh M. Robertson25, Jeffery W. Jones26, Jing-Jiang Zhou27, Linda M. Field27, Markus Friedrich26, Steven G. Nyanjom28, Erich Loza Telleria7, Guy Caljon20, José M. C. Ribeiro29, Alvaro Acosta-Serrano3, Cher-Pheng Ooi3, Clair Rose3, David P. Price19, Lee R. Haines3, Alan Christoffels9, Cheolho Sim30, Daphne Q.-D. Pham31, David L. Denlinger32, Dawn L. Geiser33, Irene Omedo34, Joy J. Winzerling33, Justin T. Peyton32, Kevin K. Marucha18, Mario Jonas9, Megan E. Meuti32, Neil D. Rawlings, Qirui Zhang32, Rosaline W. Macharia9, Rosaline W. Macharia35, Veronika Michalkova7, Veronika Michalkova36, Zahra Jalali Sefid Dashti9, Aaron A. Baumann37, Gerd Gäde38, Heather G. Marco38, Jelle Caers39, Liliane Schoofs39, Michael A. Riehle33, Wanqi Hu40, Zhijian Tu40, Aaron M. Tarone41, Anna R. Malacrida42, Caleb K. Kibet17, Francesca Scolari42, J.J.O. Koekemoer43, Judith H. Willis44, Ludvik M. Gomulski42, Marco Falchetto42, Maxwell J. Scott45, Shuhua Fu41, Sing-Hoi Sze41, Thiago Luiz7, Brian L. Weiss7, Deirdre Walshe3, Jingwen Wang7, Mark Wamalwa9, Mark Wamalwa46, Sarah Mwangi9, Urvashi N. Ramphul3, Anna K. Snyder47, Corey L. Brelsfoard48, Gavin H. Thomas49, George Tsiamis24, Peter Arensburger50, Rita V. M. Rio47, Sandy J. Macdonald49, Sumir Panji9, Sumir Panji38, Adele Kruger9, Alia Benkahla51, Apollo Simon Peter Balyeidhusa52, Atway R. Msangi, Chinyere K. Okoro2, Dawn Stephens, Eleanor J Stanley, Feziwe Mpondo9, Florence N. Wamwiri, Furaha Mramba, Geoffrey H. Siwo53, George Githinji34, Gordon William Harkins9, Grace Murilla, Heikki Lehväslaiho54, Imna I. Malele, Joanna E. Auma, Johnson Kinyua28, Johnson O. Ouma, Loyce M. Okedi, Lucien Manga, Martin Aslett2, Mathurin Koffi6, Michael W. Gaunt55, Mmule Makgamathe, Nicola Mulder38, Oliver Manangwa, Patrick P. Abila, Patrick Wincker56, Richard Gregory5, Rosemary Bateta18, Ryuichi Sakate57, Sheila C. Ommeh28, Stella Lehane3, Tadashi Imanishi57, Victor Chukwudi Osamor58, Yoshihiro Kawahara59, Yoshihiro Kawahara57 
University of Tokyo1, Wellcome Trust Sanger Institute2, Liverpool School of Tropical Medicine3, King Abdulaziz University4, University of Liverpool5, Institut de recherche pour le développement6, Yale University7, Harvard University8, University of the Western Cape9, World Health Organization10, National Institute of Genetics11, Aberystwyth University12, Obihiro University of Agriculture and Veterinary Medicine13, Indian Institute of Technology Mandi14, Indian Institute of Science Education and Research, Bhopal15, Washington University in St. Louis16, International Centre of Insect Physiology and Ecology17, Egerton University18, New Mexico State University19, Institute of Tropical Medicine Antwerp20, University of Cincinnati21, Alexander Fleming Biomedical Sciences Research Center22, International Atomic Energy Agency23, University of Patras24, University of Illinois at Urbana–Champaign25, Wayne State University26, Rothamsted Research27, Jomo Kenyatta University of Agriculture and Technology28, National Institutes of Health29, Baylor University30, University of Wisconsin–Parkside31, Ohio State University32, University of Arizona33, Wellcome Trust34, University of Nairobi35, Slovak Academy of Sciences36, Howard Hughes Medical Institute37, University of Cape Town38, Katholieke Universiteit Leuven39, Virginia Tech40, Texas A&M University41, University of Pavia42, University of Pretoria43, University of Georgia44, North Carolina State University45, Kenyatta University46, West Virginia University47, St. Catharine College48, University of York49, California State Polytechnic University, Pomona50, Pasteur Institute51, Makerere University52, University of Notre Dame53, King Abdullah University of Science and Technology54, University of London55, French Alternative Energies and Atomic Energy Commission56, National Institute of Advanced Industrial Science and Technology57, Covenant University58, University of Tsukuba59
25 Apr 2014-Science
TL;DR: The sequence and annotation of the 366-megabase Glossina mors Titans morsitans genome are described, providing a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Abstract: Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

242 citations

Journal ArticleDOI
TL;DR: Differences in infection rates and in trypanosome genotypes according to the host might indicate that the pig may not be an active animal reservoir for humans in this focus of Côte d'Ivoire.
Abstract: In a sleeping sickness focus of Cote d'Ivoire, trypanosomes were characterized in humans, pigs and tsetse using various techniques. Out of 74 patients, all the 43 stocks isolated by KIVI (Kit for In Vitro Isolation) appeared to belong to only one zymodeme of Trypanosoma brucei gambiense group 1 (the major zymodeme Z3). The only stock isolated on rodents belonged to a different, new, zymodeme (Z50), of T. b. gambiense group 1. From 18 pigs sampled in the same locations as the patients, PCR showed a high proportion of mixed infections of T. brucei s. l. and T. congolense riverine-forest. Zymodemes of T. brucei s. l. from these pigs were different from those found in humans. From a total of 16 260 captured tsetse (Glossina palpalis palpalis), 1701 were dissected and 28% were found to be infected by trypanosomes. The most prevalent trypanosome was T. congolense riverine-forest type, followed by T. vivax, T. bruceis. l. and T. congolense savannah type, this latter being associated to the forest type of T. congolense in most cases. Mixed infections by 2 or 3 of these trypanosomes were also found. Use of a microsatellite marker allowed us to distinguish T. b. gambiense group 1 in some of the mature infections in tsetse. Differences in infection rates and in trypanosome genotypes according to the host might indicate that the pig may not be an active animal reservoir for humans in this focus.

94 citations

Journal ArticleDOI
24 May 2017-eLife
TL;DR: Both forms of human African trypanosomiasis are implicate in the selection and persistence of otherwise detrimental APOL1 kidney disease variants.
Abstract: Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants.

91 citations

Journal ArticleDOI
TL;DR: Wing geometry revealed significant centroid size and shape differences between populations, especially between the two most distant populations, and there was a positive correlation in females between metric distances (wing shape differences) and geographic distances that might be attributed to the cline of environmental conditions.
Abstract: The impact of landscape fragmentation due to human and climatic mediated factors on the structure of a population of Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) was investigated in the Mouhoun river basin, Burkina Faso. Allele frequencies at Þve microsatellite loci, and metric properties based on 11 wing landmarks, were compared between four populations. The populations originated from the Mouhoun river and one of its tributaries. The average distance between samples was 72 km with the two most widely spaced populations being 216 km apart. The sampling points traversed an ecological cline in terms of rainfall and riverine forest ecotype, along a river enlarging from downstream to upstream and oriented south to north. Microsatellite DNA comparison demonstrated structuring between the populations, but not complete isolation, with an overallFst 0.012 (P 0.001). Wing geometry revealed signiÞcant centroid size and shape differences between populations, especially between the two most distant populations. There was no signiÞcant correlation between gene sow and geographic distance at this scale, but there was a positive correlation in females between metric distances (wing shape differences) and geographic distances that might be attributed to the cline of environmental conditions. The impact of the fragmentation of riparian landscapes on tsetse population structure is discussed in the context of control campaigns currently promoted by Pan African Tsetse and Trypanosomosis Eradication Campaign.

85 citations

Journal ArticleDOI
TL;DR: Investigation of whether vector competence for a given trypanosome species could be linked to the presence of specific genotypes of S. glossinidius found variations in Glossina vector competence in the wild could lead to novel risk management strategies.
Abstract: Tsetse flies transmit African trypanosomes, responsible for sleeping sickness in humans and nagana in animals. This disease affects many people with considerable impact on public health and economy in sub-Saharan Africa, whereas trypanosomes' resistance to drugs is rising. The symbiont Sodalis glossinidius is considered to play a role in the ability of the fly to acquire trypanosomes. Different species of Glossina were shown to harbor genetically distinct populations of S. glossinidius. We therefore investigated whether vector competence for a given trypanosome species could be linked to the presence of specific genotypes of S. glossinidius. Glossina palpalis gambiensis individuals were fed on blood infected either with Trypanosoma brucei gambiense or Trypanosoma brucei brucei. The genetic diversity of S. glossinidius strains isolated from infected and noninfected dissected flies was investigated using amplified fragment length polymorphism markers. Correspondence between occurrence of these markers and parasite establishment was analyzed using multivariate analysis. Sodalis glossinidius strains isolated from T. brucei gambiense-infected flies clustered differently than that isolated from T. brucei brucei-infected individuals. The ability of T. brucei gambiense and T. brucei brucei to establish in G. palpalis gambiensis insect midgut is statistically linked to the presence of specific genotypes of S. glossinidius. This could explain variations in Glossina vector competence in the wild. Then, assessment of the prevalence of specific S. glossinidius genotypes could lead to novel risk management strategies.

83 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: If national control programmes, international organisations, research institutes, and philanthropic partners engage in concerted action, elimination of this disease might even be possible, the World Health Organization has stated.

806 citations

Journal ArticleDOI
TL;DR: Since patients are also reported from non-endemic countries, human African trypanosomiasis should be considered in differential diagnosis for travellers, tourists, migrants, and expatriates who have visited or lived in endemic areas.

567 citations

01 Jan 2007

490 citations