scispace - formally typeset
Search or ask a question
Author

Sören Doose

Bio: Sören Doose is an academic researcher from University of Würzburg. The author has contributed to research in topics: Fluorescence correlation spectroscopy & Quenching (fluorescence). The author has an hindex of 27, co-authored 58 publications receiving 11134 citations. Previous affiliations of Sören Doose include Ludwig Maximilian University of Munich & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations

Journal ArticleDOI
TL;DR: FAMS is a general platform for ratiometric measurements that report on structure, dynamics, stoichiometries, environment, and interactions of diffusing or immobilized molecules, thus enabling detailed mechanistic studies and ultrasensitive diagnostics.
Abstract: We use alternating-laser excitation to achieve fluorescence-aided molecule sorting (FAMS) and enable simultaneous analysis of biomolecular structure and interactions at the level of single molecules. This was performed by labeling biomolecules with fluorophores that serve as donor–acceptor pairs for Forster resonance energy transfer, and by using alternating-laser excitation to excite directly both donors and acceptors present in single diffusing molecules. Emissions were reduced to the distance-dependent ratio E , and a distance-independent, stoichiometry-based ratio S . Histograms of E and S sorted species based on the conformation and association status of each species. S was sensitive to the stoichiometry and relative brightness of fluorophores in single molecules, observables that can monitor oligomerization and local-environment changes, respectively. FAMS permits equilibrium and kinetic analysis of macromolecule-ligand interactions; this was validated by measuring equilibrium and kinetic dissociation constants for the interaction of Escherichia coli catabolite activator protein with DNA. FAMS is a general platform for ratiometric measurements that report on structure, dynamics, stoichiometries, environment, and interactions of diffusing or immobilized molecules, thus enabling detailed mechanistic studies and ultrasensitive diagnostics.

616 citations

Journal ArticleDOI
TL;DR: The unique properties of qdots not only give biologists the opportunity to explore advanced imaging techniques such as single molecule or lifetime imaging but also to revisit traditional fluorescence imaging methodologies and extract yet unobserved or inaccessible information in vitro or in vivo.

463 citations

Journal ArticleDOI
TL;DR: In this article, the authors review complex formation and static quenching of different fluorophores by various molecular compounds, discuss applications as reporter system for macromolecular dynamics, and give illustrating examples.
Abstract: Photoinduced electron transfer (PET) between organic fluorophores and suitable electron donating moieties, for example, the amino acid tryptophan or the nucleobase guanine, can quench fluorescence upon van der Waals contact and thus report on molecular contact. PET-quenching has been used as reporter for monitoring conformational dynamics in polypeptides, proteins, and oligonucleotides. Whereas dynamic quenching transiently influences quantum yield and fluorescence lifetime of the fluorophore, static quenching in pi-stacked complexes efficiently suppresses fluorescence emission over time scales longer than the fluorescence lifetime. Static quenching therefore provides sufficient contrast to be observed at the single-molecule level. Here, we review complex formation and static quenching of different fluorophores by various molecular compounds, discuss applications as reporter system for macromolecular dynamics, and give illustrating examples.

428 citations

Journal ArticleDOI
TL;DR: This work demonstrates the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals.
Abstract: DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale1. Although static structures may find applications in structural biology2,3,4 and computer science5, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement6. DNA architectures can span three dimensions4,7,8,9,10 and DNA devices are capable of movement10,11,12,13,14,15,16, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Forster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction9; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.

348 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: It is reported that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state.
Abstract: We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.

3,817 citations

Journal ArticleDOI
TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.

3,437 citations