scispace - formally typeset
Search or ask a question
Author

Souhaib Attaiki

Bio: Souhaib Attaiki is an academic researcher. The author has contributed to research in topics: Computer science & Deep learning. The author has an hindex of 2, co-authored 3 publications receiving 14 citations.

Papers
More filters
Posted Content
TL;DR: In this paper, a simple diffusion layer is proposed for spatial communication on 3D mesh surfaces, and the spatial support of diffusion is optimized as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes.
Abstract: We introduce a new approach to deep learning on 3D surfaces, based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks automatically generalize across different samplings and resolutions of a surface -- a basic property which is crucial for practical applications. Our networks can be discretized on various geometric representations such as triangle meshes or point clouds, and can even be trained on one representation then applied to another. We optimize the spatial support of diffusion as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes. The only other ingredients in the method are a multi-layer perceptron applied independently at each point, and spatial gradient features to support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus primarily on triangle mesh surfaces, and demonstrate state-of-the-art results for a variety of tasks including surface classification, segmentation, and non-rigid correspondence.

20 citations

Posted Content
01 Dec 2020
TL;DR: The principled, geometric nature of these networks makes them agnostic to the underlying representation and insensitive to discretization, which means significant robustness to mesh sampling, and even the ability to train on a mesh and evaluate on a point cloud.
Abstract: We introduce a new approach to deep learning on 3D surfaces such as meshes or point clouds. Our key insight is that a simple learned diffusion layer can spatially share data in a principled manner, replacing operations like convolution and pooling which are complicated and expensive on surfaces. The only other ingredients in our network are a spatial gradient operation, which uses dot-products of derivatives to encode tangent-invariant filters, and a multi-layer perceptron applied independently at each point. The resulting architecture, which we call DiffusionNet, is remarkably simple, efficient, and scalable. Continuously optimizing for spatial support avoids the need to pick neighborhood sizes or filter widths a priori, or worry about their impact on network size/training time. Furthermore, the principled, geometric nature of these networks makes them agnostic to the underlying representation and insensitive to discretization. In practice, this means significant robustness to mesh sampling, and even the ability to train on a mesh and evaluate on a point cloud. Our experiments demonstrate that these networks achieve state-of-the-art results for a variety of tasks on both meshes and point clouds, including surface classification, segmentation, and non-rigid correspondence.

16 citations

Proceedings ArticleDOI
01 Sep 2022
TL;DR: A novel learning-based framework that combines the local accuracy of contrastive learning with the global consistency of geometric approaches, for robust non-rigid matching, applicable to local feature learning in both the 3D and 2D domains is presented.
Abstract: In this work, we present a novel learning-based framework that combines the local accuracy of contrastive learning with the global consistency of geometric approaches, for robust nonrigid matching. We first observe that while contrastive learning can lead to powerful point-wise features, the learned correspondences commonly lack smoothness and consistency, owing to the purely combinatorial nature of the standard contrastive losses. To overcome this limitation we propose to boost contrastive feature learning with two types of smoothness regularization that inject geometric information into correspondence learning. With this novel combination in hand, the resulting features are both highly discriminative across individual points, and, at the same time, lead to robust and consistent correspondences, through simple proximity queries. Our framework is general and is applicable to local feature learning in both the 3D and 2D domains. We demonstrate the superiority of our approach through extensive experiments on a wide range of challenging matching benchmarks, including 3D non-rigid shape correspondence and 2D image keypoint matching.

6 citations

Proceedings ArticleDOI
14 Jan 2023
TL;DR: Neural Correspondence Prior (NCP) as mentioned in this paper proposes a two-stage unsupervised paradigm for shape matching by adapting an existing approach to obtain an initial set of noisy matches, and then using these matches to train a network in a supervised manner.
Abstract: We present Neural Correspondence Prior (NCP), a new paradigm for computing correspondences between 3D shapes. Our approach is fully unsupervised and can lead to high-quality correspondences even in challenging cases such as sparse point clouds or non-isometric meshes, where current methods fail. Our first key observation is that, in line with neural priors observed in other domains, recent network architectures on 3D data, even without training, tend to produce pointwise features that induce plausible maps between rigid or non-rigid shapes. Secondly, we show that given a noisy map as input, training a feature extraction network with the input map as supervision tends to remove artifacts from the input and can act as a powerful correspondence denoising mechanism, both between individual pairs and within a collection. With these observations in hand, we propose a two-stage unsupervised paradigm for shape matching by (i) performing unsupervised training by adapting an existing approach to obtain an initial set of noisy matches, and (ii) using these matches to train a network in a supervised manner. We demonstrate that this approach significantly improves the accuracy of the maps, especially when trained within a collection. We show that NCP is data-efficient, fast, and achieves state-of-the-art results on many tasks. Our code can be found online: https://github.com/pvnieo/NCP.

3 citations

Posted Content
TL;DR: DPFM as discussed by the authors uses the functional map framework, which can be trained in a supervised or unsupervised manner, and learns descriptors directly from the data, thus both improving robustness and accuracy in challenging cases.
Abstract: We consider the problem of computing dense correspondences between non-rigid shapes with potentially significant partiality. Existing formulations tackle this problem through heavy manifold optimization in the spectral domain, given hand-crafted shape descriptors. In this paper, we propose the first learning method aimed directly at partial non-rigid shape correspondence. Our approach uses the functional map framework, can be trained in a supervised or unsupervised manner, and learns descriptors directly from the data, thus both improving robustness and accuracy in challenging cases. Furthermore, unlike existing techniques, our method is also applicable to partial-to-partial non-rigid matching, in which the common regions on both shapes are unknown a priori. We demonstrate that the resulting method is data-efficient, and achieves state-of-the-art results on several benchmark datasets. Our code and data can be found online: https://github.com/pvnieo/DPFM

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, low-order eigenvalue/eigenvector computation from operators parameterized using discrete exterior calculus is used to approximate backpropagation, yielding spectral per-element or per-mesh features with similar formulas to classical descriptors like heat/wave kernel signatures.
Abstract: Constrained by the limitations of learning toolkits engineered for other applications, such as those in image processing, many mesh-based learning algorithms employ data flows that would be atypical from the perspective of conventional geometry processing. As an alternative, we present a technique for learning from meshes built from standard geometry processing modules and operations. We show that low-order eigenvalue/eigenvector computation from operators parameterized using discrete exterior calculus is amenable to efficient approximate backpropagation, yielding spectral per-element or per-mesh features with similar formulas to classical descriptors like the heat/wave kernel signatures. Our model uses few parameters, generalizes to high-resolution meshes, and exhibits performance and time complexity on par with past work.

30 citations

Posted Content
TL;DR: Lepard as mentioned in this paper disentangles point cloud representation into feature space and 3D position space, and uses a repositioning technique to modify the cross-point-cloud relative positions.
Abstract: We present Lepard, a Learning based approach for partial point cloud matching for rigid and deformable scenes. The key characteristic of Lepard is the following approaches that exploit 3D positional knowledge for point cloud matching: 1) An architecture that disentangles point cloud representation into feature space and 3D position space. 2) A position encoding method that explicitly reveals 3D relative distance information through the dot product of vectors. 3) A repositioning technique that modifies the cross-point-cloud relative positions. Ablation studies demonstrate the effectiveness of the above techniques. For rigid point cloud matching, Lepard sets a new state-of-the-art on the 3DMatch / 3DLoMatch benchmarks with 93.6% / 69.0% registration recall. In deformable cases, Lepard achieves +27.1% / +34.8% higher non-rigid feature matching recall than the prior art on our newly constructed 4DMatch / 4DLoMatch benchmark.

12 citations

Posted Content
TL;DR: In this article, coordinate independent convolutional networks are shown to be equivariant w.r.t. under local gauge transformations (changes of local reference frames), such that the necessary level of gauge equivariance is prescribed by the corresponding structure group.
Abstract: Motivated by the vast success of deep convolutional networks, there is a great interest in generalizing convolutions to non-Euclidean manifolds. A major complication in comparison to flat spaces is that it is unclear in which alignment a convolution kernel should be applied on a manifold. The underlying reason for this ambiguity is that general manifolds do not come with a canonical choice of reference frames (gauge). Kernels and features therefore have to be expressed relative to arbitrary coordinates. We argue that the particular choice of coordinatization should not affect a network's inference -- it should be coordinate independent. A simultaneous demand for coordinate independence and weight sharing is shown to result in a requirement on the network to be equivariant under local gauge transformations (changes of local reference frames). The ambiguity of reference frames depends thereby on the G-structure of the manifold, such that the necessary level of gauge equivariance is prescribed by the corresponding structure group G. Coordinate independent convolutions are proven to be equivariant w.r.t. those isometries that are symmetries of the G-structure. The resulting theory is formulated in a coordinate free fashion in terms of fiber bundles. To exemplify the design of coordinate independent convolutions, we implement a convolutional network on the Mobius strip. The generality of our differential geometric formulation of convolutional networks is demonstrated by an extensive literature review which explains a large number of Euclidean CNNs, spherical CNNs and CNNs on general surfaces as specific instances of coordinate independent convolutions.

10 citations

Proceedings ArticleDOI
03 Feb 2022
TL;DR: A hierarchical learning design is investigated, to which local patch-level information and global shape-level structures are incorporated, which enables correspondence prediction and provides rich features for the matching stage.
Abstract: Shape matching has been a long-studied problem for the computer graphics and vision community. The objective is to predict a dense correspondence between meshes that have a certain degree of deformation. Existing methods either consider the local description of sampled points or discover correspondences based on global shape information. In this work, we investigate a hierarchical learning design, to which we incorporate local patch-level information and global shape-level structures. This flexible representation enables correspondence prediction and provides rich features for the matching stage. Finally, we propose a novel optimal transport solver by recurrently updating features on non-confident nodes to learn globally consistent correspondences between the shapes. Our results on publicly available datasets suggest robust performance in presence of severe deformations without the need of extensive training or refinement.

8 citations

Proceedings ArticleDOI
28 Jan 2022
TL;DR: A novel, Möbius-equivariant spherical convolution operator, which is based on the following observation: to achieve equivariance, one only need to consider the lower-dimensional subgroup which transforms the positions of points as seen in the frames of their neighbors.
Abstract: Möbius transformations play an important role in both geometry and spherical image processing – they are the group of conformal automorphisms of 2D surfaces and the spherical equivalent of homographies. Here we present a novel, Möbius-equivariant spherical convolution operator which we call Möbius convolution; with it, we develop the foundations for Möbius-equivariant spherical CNNs. Our approach is based on the following observation: to achieve equivariance, we only need to consider the lower-dimensional subgroup which transforms the positions of points as seen in the frames of their neighbors. To efficiently compute Möbius convolutions at scale we derive an approximation of the action of the transformations on spherical filters, allowing us to compute our convolutions in the spectral domain with the fast Spherical Harmonic Transform. The resulting framework is flexible and descriptive, and we demonstrate its utility by achieving promising results in both shape classification and image segmentation tasks.

6 citations