scispace - formally typeset
Search or ask a question
Author

Soumya Prasad

Bio: Soumya Prasad is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Frugivore & Seed dispersal. The author has an hindex of 11, co-authored 20 publications receiving 691 citations. Previous affiliations of Soumya Prasad include National Institute of Advanced Studies & Jawaharlal Nehru University.

Papers
More filters
Journal ArticleDOI
TL;DR: Based on the analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed disperseal networks.

394 citations

Journal Article
Abstract: Non-timber forest products (NTFP) are extensively extracted from Indian forests, and their role in rural and forest economies is immense. However, the long-term ecological sustainability of NTFP extraction with respect to resource populations, dependent animal species and ecosystem functioning has remained largely unexamined. In this article NTFP research undertaken in India is reviewed in an attempt to understand issues related to ecological sustainability. There is a glaring scarcity of systematic research on ecological aspects of NTFP extraction in India. From the few available studies, it appears that species differ in their responses to harvest depending on the plant part extracted, natural history attributes and harvesting techniques. However, regeneration and population densities of some NTFP species are reported to be adversely affected by extraction. Such adverse effects, though, cannot be attributed to NTFP harvests alone, but rather to a com­bination of harvests, damaging harvesting practices and accompanying anthro­pogenic disturbances such as fire, grazing and fuel wood collection. There is little information on the long-term indirect effects of NTFP extraction on dependent animal species. The available literature also indicates a disturbing trend of eco­system simplification due to intensive forest use, including extraction of NTFP, which may gradually lead to the weeding out of vulnerable plant species from Indian forests. Much more research is required before it can be clearly understood to what extent and in what ways livelihoods based on NTFP can be compatible with biodiversity conservation.

75 citations

Journal ArticleDOI
TL;DR: It is shown that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics, and analyses suggest that active management to maintain the abundances of a small set of important frugival vertebrates under climate change could markedly reduce the projected loss of seed disperseal services and facilitate shifting distributions of rainforest plant species.
Abstract: The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.

47 citations

Journal ArticleDOI
01 Mar 2010-Oikos
TL;DR: Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhood densities only in the high fruit availability year.
Abstract: The quantity of fruit consumed by dispersers is highly variable among individuals within plant populations. The outcome of such selection operated by frugivores has been examined mostly with respect to changing spatial contexts. The influence of varying temporal contexts on frugivore choice, and their possible demographic and evolutionary consequences is poorly understood. We examined if temporal variation in fruit availability across a hierarchy of nested temporal levels (interannual, intraseasonal, 120 h, 24 h) altered frugivore choice for a complex seed dispersal system in dry tropical forests of southern India. The interactions between Phyllanthus emblica and its primary disperser (ruminants) was mediated by another frugivore (a primate), which made large quantities of fruit available on the ground to ruminants. The direction and strength of crop size and neighborhood effects on this interaction varied with changing temporal contexts. Fruit availability was higher in the first of the two study years, and at the start of the season in both years. Fruit persistence on trees, determined by primate foraging, was influenced by crop size and conspecific neighborhood densities only in the high fruit availability year. Fruit removal by ruminants was influenced by crop size in both years and neighborhood densities only in the high availability year. In both years, these effects were stronger at the start of the season. Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhoods. All trees were not equally attractive to frugivores in a P. emblica population at all points of time. Temporal asymmetry in frugivore-mediated selection could reduce potential for co-evolution between frugivores and plants by diluting selective pressures. Inter-dependencies formed between disparate animal consumers can add additional levels of complexity to plant-frugivore mutualistic networks and have potential reproductive consequences for specific individuals within populations.

42 citations

Journal ArticleDOI
TL;DR: Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica’s most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%.
Abstract: Tropical forest ruminants disperse several plants; yet, their effectiveness as seed dispersers is not systematically quantified. Information on frequency and extent of frugivory by ruminants is lacking. Techniques such as tree watches or fruit traps adapted from avian frugivore studies are not suitable to study terrestrial frugivores, and conventional camera traps provide little quantitative information. We used a novel time-delay camera-trap technique to assess the effectiveness of ruminants as seed dispersers for Phyllanthus emblica at Mudumalai, southern India. After being triggered by animal movement, cameras were programmed to take pictures every 2 min for the next 6 min, yielding a sequence of four pictures. Actual frugivores were differentiated from mere visitors, who did not consume fruit, by comparing the number of fruit remaining across the time-delay photograph sequence. During a 2-year study using this technique, we found that six terrestrial mammals consumed fallen P. emblica fruit. Additionally, seven mammals and one bird species visited fruiting trees but did not consume fallen fruit. Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica’s most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%. Plants like P. emblica that are dispersed mainly by large mammalian frugivores are likely to have limited ability to migrate across fragmented landscapes in response to rapidly changing climates. We hope that more quantitative information on ruminant frugivory will become available with a wider application of our time-delay camera-trap technique.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of knowledge shortfalls is updated and the tradeoffs between generality and uncertainty are reviewed and a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge is concluded.
Abstract: Ecologists and evolutionary biologists are increasingly using big-data approaches to tackle questions at large spatial, taxonomic, and temporal scales. However, despite recent efforts to gather two centuries of biodiversity inventories into comprehensive databases, many crucial research questions remain unanswered. Here, we update the concept of knowledge shortfalls and review the tradeoffs between generality and uncertainty. We present seven key shortfalls of current biodiversity data. Four previously proposed shortfalls pinpoint knowledge gaps for species taxonomy (Linnean), distribution (Wallacean), abundance (Prestonian), and evolutionary patterns (Darwinian). We also redefine the Hutchinsonian shortfall to apply to the abiotic tolerances of species and propose new shortfalls relating to limited knowledge of species traits (Raunkiaeran) and biotic interactions (Eltonian). We conclude with a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge f...

667 citations

Journal ArticleDOI
TL;DR: Using tree census data from a large-scale plot monitored over a 15-year period since the approximate onset of intense hunting, a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community suggests that over-hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time.
Abstract: Hunting affects a considerably greater area of the tropical forest biome than deforestation and logging combined. Often even large remote protected areas are depleted of a substantial proportion of their vertebrate fauna. However, understanding of the long-term ecological consequences of defaunation in tropical forests remains poor. Using tree census data from a large-scale plot monitored over a 15-year period since the approximate onset of intense hunting, we provide a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community. Our data strongly suggest that over-hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time. However, we do not find any support for suggestions that over-hunting reduces above-ground biomass or biomass accumulation rate in this forest. To maintain critical ecosystem processes in tropical forests increased efforts are required to protect and restore wildlife populations.

235 citations

Journal ArticleDOI
TL;DR: The role of seed exchange networks in the preservation and adaptation of crop specific and genetic diversity is discussed in this article, where the authors advocate a diversity of approaches to foster the creation of robust and policy-relevant knowledge.
Abstract: The circulation of seed among farmers is central to agrobiodiversity conservation and dynamics. Agrobiodiversity, the diversity of agricultural systems from genes to varieties and crop species, from farming methods to landscape composition, is part of humanity’s cultural heritage. Whereas agrobiodiversity conservation has received much attention from researchers and policy makers over the last decades, the methods available to study the role of seed exchange networks in preserving crop biodiversity have only recently begun to be considered. In this overview, we present key concepts, methods, and challenges to better understand seed exchange networks so as to improve the chances that traditional crop varieties (landraces) will be preserved and used sustainably around the world. The available literature suggests that there is insufficient knowledge about the social, cultural, and methodological dimensions of environmental change, including how seed exchange networks will cope with changes in climates, socio-economic factors, and family structures that have supported seed exchange systems to date. Methods available to study the role of seed exchange networks in the preservation and adaptation of crop specific and genetic diversity range from meta-analysis to modelling, from participatory approaches to the development of bio-indicators, from genetic to biogeographical studies, from anthropological and ethnographic research to the use of network theory. We advocate a diversity of approaches, so as to foster the creation of robust and policy-relevant knowledge. Open challenges in the study of the role of seed exchange networks in biodiversity conservation include the development of methods to (i) enhance farmers’ participation to decision-making in agro-ecosystems, (ii) integrate ex situ and in situ approaches, (iii) achieve interdisciplinary research collaboration between social and natural scientists, and (iv) use network analysis as a conceptual framework to bridge boundaries among researchers, farmers and policy makers, as well as other stakeholders.

220 citations

Journal ArticleDOI
01 Feb 2014-Ecology
TL;DR: This work used cross-validation techniques and a global data set to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances and provided a function to be run in the software package R that enables researchers to estimate maximum disperseal distances with confidence intervals for plant species using measured traits as predictors.
Abstract: Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.

201 citations