scispace - formally typeset
Search or ask a question
Author

Sowbiya Muneer

Bio: Sowbiya Muneer is an academic researcher from VIT University. The author has contributed to research in topics: Photosynthesis & Salinity. The author has an hindex of 19, co-authored 60 publications receiving 1117 citations. Previous affiliations of Sowbiya Muneer include Gyeongsang National University & Jamia Millia Islamia.


Papers
More filters
Journal ArticleDOI
TL;DR: A significant decrease in leaf osmotic potential and chlorophyll content was apparent after 9 d of S-deficiency, and the remobilization of stored N and S were mainly issued only from leaves in control plants, while from leaves and petiole in S- deficient ones.
Abstract: Sulfur (S) deficiency effects on nitrogen (N) and S fluxes during vegetative growth of Brassica napus was investigated by tracing 15N and 34S for 9 d of S-sufficient [1.5 mM sulfate (SO42-)] and S-deficient (0.05 mM SO42-) condition. A significant decrease in leaf osmotic potential and chlorophyll content was apparent after 9 d of S-deficiency. Sulfur uptake during 9 d was remarkably decreased by 94.3% by S-deficiency, whereas no significant change occurred for N uptake. The N and S deriving from uptake were mainly allocated to the leaves in control plants, but the S flow into leaves was largely restricted under S-deficient condition. The remobilization of stored N and S were mainly issued only from leaves in control plants, while from leaves and petiole in S-deficient ones. The remobilization of N and S mainly issued from leaves flows into the roots both in control and S-deficient plants.

8 citations

Journal ArticleDOI
TL;DR: The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures.
Abstract: The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation "Purple Beauty" were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (-Si/-Hyperhydricity), hyperhydric with no silicon treatment (-Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/-Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein-protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H₂O₂) and singlet oxygen (O₂1-). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures.

8 citations

Journal ArticleDOI
TL;DR: In this paper, a gel-based proteomic analysis was performed to investigate the changes in protein profiles during the ripening of exogenous-ethylene-treated kiwifruit (Actinidia deliciosa) cultivars ‘Hayward’ and ‘Garmrok’.
Abstract: Understanding the fruit ripening mechanism is critical for fruit quality improvement. Although postharvest ethylene application is known to enhance the onset of fruit ripening, the exact mechanisms remain unclear. In this study, a gel-based proteomic analysis was performed to investigate the changes in protein profiles during the ripening of exogenous-ethylene-treated kiwifruit (Actinidia deliciosa) cultivars ‘Hayward’ and ‘Garmrok’. Based on comparative two-dimensional gel electrophoresis, most of the proteins were aggregated in exogenous-ethylene-treated kiwifruit compared to the untreated kiwifruit. Consequently, 90 and 106 proteins were differentially expressed in ‘Hayward’ and ‘Garmrok’ kiwifruit, respectively. Among the successfully identified proteins by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry, the 50% in ‘Hayward’ kiwifruit and 60% in ‘Garmrok’ kiwifruit were associated with ripening. Also, 18% and 10% of proteins were associated with defense response in ‘Hayward’ and ‘Garmrok’ kiwifruit, respectively. The other major proteins were related to protein biosynthesis and photosynthesis/Calvin cycle during kiwifruit ripening. We used bioinformatics analysis to determine the interactions between identified proteins, and this proteomic approach provided insights into biological pathways and molecular functions in postharvest ripening of exogenous-ethylene-treated kiwifruit.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the impact of two distinct Si concentrations (1 and 5mM) on the physiochemical features of the mung bean, one of the most extensively cultivated legumes, when exposed to salinity (10, 20, and 50mM NaCl).
Abstract: Mung bean is a low-cost high-protein legume that is sensitive to salinity. Salt stress has been demonstrated to be mitigated by silicon (Si). In legumes, the potential for silicon (Si)-mediated abiotic stress reduction has mainly been ignored. Moreover, there is little information on the specific role of comparable Si (sodium silicate) concentrations in salinity stress reduction. As a result, the current study investigated the impact of two distinct Si concentrations (1 and 5 mM) on the physiochemical features of the “mung bean,” one of the most extensively cultivated legumes, when exposed to salinity (10, 20, and 50 mM NaCl). Salinity stress reduced growth variables such as biomass, nodule formation, plant length, height, and photosynthetic measures, which were mitigated by silicon supplementation at 5 mM sodium silicate. The inclusion of silicon increased the expression of photosynthetic proteins such as PSI, PSII, and LHCs under salt stress. Salinity stress also caused oxidative damage in the mung bean in the form of hydrogen peroxide (H2O2) and superoxide radical (O2−), leading in increased lipid peroxidation (MDA) and electrolyte leakage. In contrast, 5 mM sodium silicate tends to scavenge free radicals, reducing lipid peroxidation (MDA) and electrolyte loss. This was linked to significant silica deposition in the leaf epidermis, which eventually functioned as a mechanical barrier in mitigating the deleterious effects of salt stress. Si supplementation also decreased Na+ uptake while increasing K+ uptake. Silicon, specifically 5 mM sodium silicate, was found to minimize salinity stress in mung bean by altering physio-chemical parameters such as photosynthetic machinery, Na+/K+ homeostasis, mechanical barriers, osmolyte production, and oxidative stress.

5 citations

Journal ArticleDOI
TL;DR: The data suggested that chrysanthemum plants developed reactive oxygen species and revealed signaling pathways to cope with drought stress to maintain homeostasis.
Abstract: Drought is increasing prevalently, mostly due to global warming, and harmful effects associated with drought stress include a reduction in the developmental phases of the plant life cycle. Drought stress affects vital metabolic processes in plants such as transpiration, photosynthesis and respiration. The other physiological and cellular processes like protein denaturation and aggregation are also affected by drought. Drought stress severely affects the floral industry by reducing the yield of flowers and among them is chrysanthemum (Dendranthema grandiflorum). In this study, we determined the critical signaling pathways, tolerance mechanism and homeostatic maintenance to drought stress in chrysanthemum. We compared the proteome of chrysanthemum leaves under drought stress. Among 250 proteins on 2DE gels, 30 protein spots were differentially expressed. These proteins were involved in major signaling pathways including, stress response, flower development and other secondary metabolism like physiological transport, circadian rhythm, gene regulation, DNA synthesis and protein ubiquitination. A reduction in a biomass, flower development, photosynthesis, transpiration, stomatal conductance, PSII yield and stomatal index was also observed in our results. Moreover, the stress markers and leaf water potential were also analyzed to depict the level of stress tolerance in chrysanthemum. Our data suggested that chrysanthemum plants developed reactive oxygen species and revealed signaling pathways to cope with drought stress. These results, thus, provide crucial information about how chrysanthemum plants respond to drought stress to maintain homeostasis.

5 citations


Cited by
More filters
Journal Article

1,633 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
TL;DR: The effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization) can prevent soil and water salinization and mitigate the adverse effects of Salinity are discussed.
Abstract: Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea), increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt) of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts) and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization) can prevent soil and water salinization and mitigate the adverse effects of salinity.

759 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants and focuses on the defense mechanisms as well as molecular interactions.
Abstract: Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada–Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions.

486 citations