scispace - formally typeset
Search or ask a question
Author

Sozinho Acácio

Other affiliations: University of Barcelona
Bio: Sozinho Acácio is an academic researcher from International Military Sports Council. The author has contributed to research in topics: Population & Medicine. The author has an hindex of 17, co-authored 43 publications receiving 4728 citations. Previous affiliations of Sozinho Acácio include University of Barcelona.
Topics: Population, Medicine, Diarrhea, Pneumonia, Rotavirus

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Interventions targeting five pathogens can substantially reduce the burden of moderate-to-severe diarrhoea and suggest new methods and accelerated implementation of existing interventions (rotavirus vaccine and zinc) are needed to prevent disease and improve outcomes.

2,766 citations

Journal ArticleDOI
Ting Shi1, David A. McAllister2, Katherine L. O'Brien3, Eric A. F. Simões4, Shabir A. Madhi5, Bradford D. Gessner, Fernando P. Polack, Evelyn Balsells1, Sozinho Acácio6, Claudia Aguayo, Issifou Alassani, Asad Ali7, Martin Antonio8, Shally Awasthi9, Juliet O. Awori10, Eduardo Azziz-Baumgartner11, Eduardo Azziz-Baumgartner12, Henry C. Baggett12, Vicky L. Baillie5, Angel Balmaseda, Alfredo Barahona, Sudha Basnet13, Sudha Basnet14, Quique Bassat15, Quique Bassat6, Wilma Basualdo, Godfrey Bigogo10, Louis Bont16, Robert F. Breiman17, W. Abdullah Brooks3, W. Abdullah Brooks11, Shobha Broor18, Nigel Bruce19, Dana Bruden12, Philippe Buchy20, Stuart Campbell1, Phyllis Carosone-Link20, Mandeep S. Chadha21, James Chipeta22, Monidarin Chou23, Wilfrido Clara12, Cheryl Cohen5, Cheryl Cohen24, Elizabeth de Cuellar, Duc Anh Dang, Budragchaagiin Dash-Yandag, Maria Deloria-Knoll3, Mukesh Dherani19, Tekchheng Eap, Bernard E. Ebruke8, Marcela Echavarria, Carla Cecília de Freitas Lázaro Emediato, Rodrigo Fasce, Daniel R. Feikin12, Luzhao Feng25, Angela Gentile26, Aubree Gordon27, Doli Goswami3, Doli Goswami11, Sophie Goyet20, Michelle J. Groome5, Natasha B. Halasa28, Siddhivinayak Hirve, Nusrat Homaira11, Nusrat Homaira29, Stephen R. C. Howie8, Stephen R. C. Howie30, Stephen R. C. Howie31, Jorge Jara32, Imane Jroundi15, Cissy B. Kartasasmita, Najwa Khuri-Bulos33, Karen L. Kotloff34, Anand Krishnan18, Romina Libster28, Romina Libster35, Olga Lopez, Marilla G. Lucero36, Florencia Lución26, Socorro Lupisan36, Debora N. Marcone, John P. McCracken32, Mario Mejia, Jennifer C. Moïsi, Joel M. Montgomery12, David P. Moore5, Cinta Moraleda15, Jocelyn Moyes24, Jocelyn Moyes5, Patrick K. Munywoki10, Patrick K. Munywoki37, Kuswandewi Mutyara, Mark P. Nicol38, D. James Nokes39, D. James Nokes10, Pagbajabyn Nymadawa40, Maria Tereza da Costa Oliveira, Histoshi Oshitani41, Nitin Pandey9, Gláucia Paranhos-Baccalà42, Lia Neu Phillips17, Valentina Picot42, Mustafizur Rahman11, Mala Rakoto-Andrianarivelo, Zeba A Rasmussen43, Barbara Rath44, Annick Robinson, Candice Romero, Graciela Russomando45, Vahid Salimi46, Pongpun Sawatwong12, Nienke M Scheltema16, Brunhilde Schweiger47, J. Anthony G. Scott48, J. Anthony G. Scott10, Phil Seidenberg49, Kunling Shen50, Rosalyn J. Singleton12, Rosalyn J. Singleton51, Viviana Sotomayor, Tor A. Strand14, Tor A. Strand52, Agustinus Sutanto, Mariam Sylla, Milagritos D. Tapia34, Somsak Thamthitiwat12, Elizabeth Thomas43, Rafal Tokarz53, Claudia Turner54, Marietjie Venter55, Sunthareeya Waicharoen56, Jianwei Wang57, Wanitda Watthanaworawit54, Lay-Myint Yoshida58, Hongjie Yu25, Heather J. Zar38, Harry Campbell1, Harish Nair1, Harish Nair59 
University of Edinburgh1, University of Glasgow2, Johns Hopkins University3, University of Colorado Boulder4, University of the Witwatersrand5, International Military Sports Council6, Aga Khan University7, Medical Research Council8, King George's Medical University9, Kenya Medical Research Institute10, International Centre for Diarrhoeal Disease Research, Bangladesh11, Centers for Disease Control and Prevention12, Tribhuvan University13, University of Bergen14, University of Barcelona15, Utrecht University16, Emory University17, All India Institute of Medical Sciences18, University of Liverpool19, Boston Children's Hospital20, National Institute of Virology21, University of Zambia22, University of Health Sciences Antigua23, National Health Laboratory Service24, Chinese Center for Disease Control and Prevention25, Austral University26, University of Michigan27, Vanderbilt University28, University of New South Wales29, University of Otago30, University of Auckland31, Universidad del Valle de Guatemala32, University of Jordan33, University of Maryland, Baltimore34, National Scientific and Technical Research Council35, Research Institute for Tropical Medicine36, Pwani University College37, University of Cape Town38, University of Warwick39, Academy of Medical Sciences, United Kingdom40, Tohoku University41, École normale supérieure de Lyon42, John E. Fogarty International Center43, Charité44, Universidad Nacional de Asunción45, Tehran University of Medical Sciences46, Robert Koch Institute47, University of London48, University of New Mexico49, Capital Medical University50, Alaska Native Tribal Health Consortium51, Innlandet Hospital Trust52, Columbia University53, Mahidol University54, University of Pretoria55, Thailand Ministry of Public Health56, Peking Union Medical College57, Nagasaki University58, Public Health Foundation of India59
TL;DR: In this paper, the authors estimated the incidence and hospital admission rate of RSV-associated acute lower respiratory infection (RSV-ALRI) in children younger than 5 years stratified by age and World Bank income regions.

1,470 citations

Journal ArticleDOI
Selidji T Agnandji1, Selidji T Agnandji2, Bertrand Lell1, Bertrand Lell2  +165 moreInstitutions (14)
TL;DR: The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants.
Abstract: BACKGROUND: The candidate malaria vaccine RTS,S/AS01 reduced episodes of both clinical and severe malaria in children 5 to 17 months of age by approximately 50% in an ongoing phase 3 trial. We studied infants 6 to 12 weeks of age recruited for the same trial. METHODS: We administered RTS,S/AS01 or a comparator vaccine to 6537 infants who were 6 to 12 weeks of age at the time of the first vaccination in conjunction with Expanded Program on Immunization (EPI) vaccines in a three-dose monthly schedule. Vaccine efficacy against the first or only episode of clinical malaria during the 12 months after vaccination, a coprimary end point, was analyzed with the use of Cox regression. Vaccine efficacy against all malaria episodes, vaccine efficacy against severe malaria, safety, and immunogenicity were also assessed. RESULTS: The incidence of the first or only episode of clinical malaria in the intention-to-treat population during the 14 months after the first dose of vaccine was 0.31 per person-year in the RTS,S/AS01 group and 0.40 per person-year in the control group, for a vaccine efficacy of 30.1% (95% confidence interval [CI], 23.6 to 36.1). Vaccine efficacy in the per-protocol population was 31.3% (97.5% CI, 23.6 to 38.3). Vaccine efficacy against severe malaria was 26.0% (95% CI, -7.4 to 48.6) in the intention-to-treat population and 36.6% (95% CI, 4.6 to 57.7) in the per-protocol population. Serious adverse events occurred with a similar frequency in the two study groups. One month after administration of the third dose of RTS,S/AS01, 99.7% of children were positive for anti-circumsporozoite antibodies, with a geometric mean titer of 209 EU per milliliter (95% CI, 197 to 222). CONCLUSIONS: The RTS,S/AS01 vaccine coadministered with EPI vaccines provided modest protection against both clinical and severe malaria in young infants. (Funded by GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative; RTS,S ClinicalTrials.gov number, NCT00866619.).

700 citations

Journal ArticleDOI
TL;DR: The enormous African/Asian Cryptosporidium disease burden warrants investments to develop vaccines, diagnostics and therapies.
Abstract: Background The importance of Cryptosporidium as a pediatric enteropathogen in developing countries is recognized. Methods Data from the Global Enteric Multicenter Study (GEMS), a 3-year, 7-site, case-control study of moderate-to-severe diarrhea (MSD) and GEMS-1A (1-year study of MSD and less-severe diarrhea [LSD]) were analyzed. Stools from 12,110 MSD and 3,174 LSD cases among children aged <60 months and from 21,527 randomly-selected controls matched by age, sex and community were immunoassay-tested for Cryptosporidium. Species of a subset of Cryptosporidium-positive specimens were identified by PCR; GP60 sequencing identified anthroponotic C. parvum. Combined annual Cryptosporidium-attributable diarrhea incidences among children aged <24 months for African and Asian GEMS sites were extrapolated to sub-Saharan Africa and South Asian regions to estimate region-wide MSD and LSD burdens. Attributable and excess mortality due to Cryptosporidium diarrhea were estimated. Findings Cryptosporidium was significantly associated with MSD and LSD below age 24 months. Among Cryptosporidium-positive MSD cases, C. hominis was detected in 77.8% (95% CI, 73.0%-81.9%) and C. parvum in 9.9% (95% CI, 7.1%-13.6%); 92% of C. parvum tested were anthroponotic genotypes. Annual Cryptosporidium-attributable MSD incidence was 3.48 (95% CI, 2.27–4.67) and 3.18 (95% CI, 1.85–4.52) per 100 child-years in African and Asian infants, respectively, and 1.41 (95% CI, 0.73–2.08) and 1.36 (95% CI, 0.66–2.05) per 100 child-years in toddlers. Corresponding Cryptosporidium-attributable LSD incidences per 100 child-years were 2.52 (95% CI, 0.33–5.01) and 4.88 (95% CI, 0.82–8.92) in infants and 4.04 (95% CI, 0.56–7.51) and 4.71 (95% CI, 0.24–9.18) in toddlers. We estimate 2.9 and 4.7 million Cryptosporidium-attributable cases annually in children aged <24 months in the sub-Saharan Africa and India/Pakistan/Bangladesh/Nepal/Afghanistan regions, respectively, and ~202,000 Cryptosporidium-attributable deaths (regions combined). ~59,000 excess deaths occurred among Cryptosporidium-attributable diarrhea cases over expected if cases had been Cryptosporidium-negative. Conclusions The enormous African/Asian Cryptosporidium disease burden warrants investments to develop vaccines, diagnostics and therapies.

173 citations

Journal ArticleDOI
TL;DR: Weighted adjusted population attributable fractions showed that most attributable cases of MSD and LSD were due to rotavirus, Cryptosporidium spp, enterotoxigenic Escherichia coli encoding heat-stable toxin, and Shigella spp.

137 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: All-cause age-standardised YLD rates decreased by 3·9% from 1990 to 2017; however, the all-age YLD rate increased by 7·2% while the total sum of global YLDs increased from 562 million (421–723) to 853 million (642–1100).

7,419 citations

Journal ArticleDOI
Mohsen Naghavi1, Haidong Wang1, Rafael Lozano1, Adrian Davis2  +728 moreInstitutions (294)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.

5,792 citations

Journal ArticleDOI
Haidong Wang1, Mohsen Naghavi1, Christine Allen1, Ryan M Barber1  +841 moreInstitutions (293)
TL;DR: The Global Burden of Disease 2015 Study provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015, finding several countries in sub-Saharan Africa had very large gains in life expectancy, rebounding from an era of exceedingly high loss of life due to HIV/AIDS.

4,804 citations