scispace - formally typeset
Search or ask a question
Author

Spyros Kotoulas

Bio: Spyros Kotoulas is an academic researcher from IBM. The author has contributed to research in topics: RDF & Semantic Web. The author has an hindex of 21, co-authored 103 publications receiving 1971 citations. Previous affiliations of Spyros Kotoulas include University of Huddersfield & University of Amsterdam.
Topics: RDF, Semantic Web, Scalability, Linked data, Joins


Papers
More filters
Book ChapterDOI
06 Nov 2009
TL;DR: The proposed technique for materialising the closure of an RDF graph based on MapReduce is scalable and allows the RDFS closure of 865M triples from the Web in less than two hours, faster than any other published approach.
Abstract: We address the problem of scalable distributed reasoning, proposing a technique for materialising the closure of an RDF graph based on MapReduce. We have implemented our approach on top of Hadoop and deployed it on a compute cluster of up to 64 commodity machines. We show that a naive implementation on top of MapReduce is straightforward but performs badly and we present several non-trivial optimisations. Our algorithm is scalable and allows us to compute the RDFS closure of 865M triples from the Web (producing 30B triples) in less than two hours, faster than any other published approach.

260 citations

Journal ArticleDOI
TL;DR: This article proposes a distributed technique to perform materialization under the RDFS and OWL ter Horst semantics using the MapReduce programming model and shows that it scales linearly and vastly outperforms current systems in terms of maximum data size and inference speed.

197 citations

Book ChapterDOI
30 May 2010
TL;DR: This paper proposes solutions to allow distributed computation of the closure of an RDF graph under the OWL Horst semantics, and demonstrates the WebPIE inference engine, built on top of the Hadoop platform and deployed on a compute cluster of 64 machines.
Abstract: In previous work we have shown that the MapReduce framework for distributed computation can be deployed for highly scalable inference over RDF graphs under the RDF Schema semantics. Unfortunately, several key optimizations that enabled the scalable RDFS inference do not generalize to the richer OWL semantics. In this paper we analyze these problems, and we propose solutions to overcome them. Our solutions allow distributed computation of the closure of an RDF graph under the OWL Horst semantics. We demonstrate the WebPIE inference engine, built on top of the Hadoop platform and deployed on a compute cluster of 64 machines. We have evaluated our approach using some real-world datasets (UniProt and LDSR, about 0.9-1.5 billion triples) and a synthetic benchmark (LUBM, up to 100 billion triples). Results show that our implementation is scalable and vastly outperforms current systems when comparing supported language expressivity, maximum data size and inference speed.

177 citations

Journal ArticleDOI
TL;DR: This paper used deep convolutional neural networks to represent complex features and trained the network on a dataset providing a broad categorization of health information, which outperformed several approaches widely used in natural language processing tasks by about 15%.
Abstract: We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

121 citations

Journal ArticleDOI
TL;DR: This work presents the divide-conquer-swap strategy and shows that this model converges towards completeness, and addresses the problem of making distributed reasoning scalable and load-balanced.

112 citations


Cited by
More filters
Book
05 Jun 2007
TL;DR: The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content.
Abstract: Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaikos book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, and artificial intelligence. The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content. In particular, the book includes a new chapter dedicated to the methodology for performing ontology matching. It also covers emerging topics, such as data interlinking, ontology partitioning and pruning, context-based matching, matcher tuning, alignment debugging, and user involvement in matching, to mention a few. More than 100 state-of-the-art matching systems and frameworks were reviewed. With Ontology Matching, researchers and practitioners will find a reference book that presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can be equally applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a systematic and detailed account of matching techniques and matching systems from theoretical, practical and application perspectives.

2,579 citations

Patent
14 Jun 2016
TL;DR: Newness and distinctiveness is claimed in the features of ornamentation as shown inside the broken line circle in the accompanying representation as discussed by the authors, which is the basis for the representation presented in this paper.
Abstract: Newness and distinctiveness is claimed in the features of ornamentation as shown inside the broken line circle in the accompanying representation.

1,500 citations

Journal ArticleDOI
TL;DR: It is conjecture that significant improvements can be obtained only by addressing important challenges for ontology matching and presents such challenges with insights on how to approach them, thereby aiming to direct research into the most promising tracks and to facilitate the progress of the field.
Abstract: After years of research on ontology matching, it is reasonable to consider several questions: is the field of ontology matching still making progress? Is this progress significant enough to pursue further research? If so, what are the particularly promising directions? To answer these questions, we review the state of the art of ontology matching and analyze the results of recent ontology matching evaluations. These results show a measurable improvement in the field, the speed of which is albeit slowing down. We conjecture that significant improvements can be obtained only by addressing important challenges for ontology matching. We present such challenges with insights on how to approach them, thereby aiming to direct research into the most promising tracks and to facilitate the progress of the field.

1,215 citations