scispace - formally typeset
Search or ask a question
Author

Srdjan Lukic

Bio: Srdjan Lukic is an academic researcher from North Carolina State University. The author has contributed to research in topics: Control theory & Microgrid. The author has an hindex of 38, co-authored 173 publications receiving 7580 citations. Previous affiliations of Srdjan Lukic include Illinois Institute of Technology & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a review of ESSs for transport and grid applications, covering several aspects as the storage technology, the main applications, and the power converters used to operate some of the energy storage technologies.
Abstract: Energy storage systems (ESSs) are enabling technologies for well-established and new applications such as power peak shaving, electric vehicles, integration of renewable energies, etc. This paper presents a review of ESSs for transport and grid applications, covering several aspects as the storage technology, the main applications, and the power converters used to operate some of the energy storage technologies. Special attention is given to the different applications, providing a deep description of the system and addressing the most suitable storage technology. The main objective of this paper is to introduce the subject and to give an updated reference to nonspecialist, academic, and engineers in the field of power electronics.

1,115 citations

Journal ArticleDOI
TL;DR: This paper reviews state-of-the-art ESSs in automotive applications and hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.
Abstract: The fuel efficiency and performance of novel vehicles with electric propulsion capability are largely limited by the performance of the energy storage system (ESS). This paper reviews state-of-the-art ESSs in automotive applications. Battery technology options are considered in detail, with emphasis on methods of battery monitoring, managing, protecting, and balancing. Furthermore, other ESS candidates such as ultracapacitors, flywheels and fuel cells are also discussed. Finally, hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.

982 citations

Journal ArticleDOI
TL;DR: The operational characteristics of the topologies for hybrid electric vehicles, fuel cell vehicles, and more electric vehicles (MEV) are discussed and some of the major fundamental issues that currently face these advanced vehicular technologies are highlighted.
Abstract: This paper discusses the operational characteristics of the topologies for hybrid electric vehicles (HEV), fuel cell vehicles (FCV), and more electric vehicles (MEV). A brief description of series hybrid, parallel hybrid, and fuel cell-based propulsion systems are presented. The paper also presents fuel cell propulsion applications, more specific to light-duty passenger cars as well as heavy-duty buses. Finally, some of the major fundamental issues that currently face these advanced vehicular technologies including the challenges for market penetration are highlighted.

712 citations

Journal ArticleDOI
10 Dec 2019
TL;DR: The benefits of using the solid-state transformers in the XFC stations to replace the conventional line-frequency transformers and a comprehensive review of the medium-voltage SST designs for the X FC application are considered.
Abstract: With the number of electric vehicles (EVs) on the rise, there is a need for an adequate charging infrastructure to serve these vehicles. The emerging extreme fast-charging (XFC) technology has the potential to provide a refueling experience similar to that of gasoline vehicles. In this article, we review the state-of-the-art EV charging infrastructure and focus on the XFC technology, which will be necessary to support the current and future EV refueling needs. We present the design considerations of the XFC stations and review the typical power electronics converter topologies suitable to deliver XFC. We consider the benefits of using the solid-state transformers (SSTs) in the XFC stations to replace the conventional line-frequency transformers and further provide a comprehensive review of the medium-voltage SST designs for the XFC application.

382 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the state of the art of IPT systems and explored the suitability of the technology to wirelessly charge battery powered vehicles, and showed that the IPT technology has merits for stationary charging, opportunity charging, and dynamic charging when the vehicle is moving along a dedicated lane equipped with an IPT system.
Abstract: In this article, we have reviewed the state of the art of IPT systems and have explored the suitability of the technology to wirelessly charge battery powered vehicles. the review shows that the IPT technology has merits for stationary charging (when the vehicle is parked), opportunity charging (when the vehicle is stopped for a short period of time, for example, at a bus stop), and dynamic charging (when the vehicle is moving along a dedicated lane equipped with an IPT system). Dynamic wireless charging holds promise to partially or completely eliminate the overnight charging through a compact network of dynamic chargers installed on the roads that would keep the vehicle batteries charged at all times, consequently reducing the range anxiety and increasing the reliability of EVs. Dynamic charging can help lower the price of EVs by reducing the size of the battery pack. Indeed, if the recharging energy is readily available, the batteries do not have to support the whole driving range but only supply power when the IPT system is not available. Depending on the power capability, the use of dynamic charging may increase driving range and reduce the size of the battery pack.

318 citations


Cited by
More filters
Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Abstract: Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty–first century must also be sustainable. Solar and water–based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

7,721 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Journal ArticleDOI
TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.

2,790 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

2,327 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the technologies in the wireless power transfer (WPT) area applicable to electric vehicle (EV) wireless charging, and the obstacles of charging time, range, and cost can be easily mitigated.
Abstract: Wireless power transfer (WPT) using magnetic resonance is the technology which could set human free from the annoying wires. In fact, the WPT adopts the same basic theory which has already been developed for at least 30 years with the term inductive power transfer. WPT technology is developing rapidly in recent years. At kilowatts power level, the transfer distance increases from several millimeters to several hundred millimeters with a grid to load efficiency above 90%. The advances make the WPT very attractive to the electric vehicle (EV) charging applications in both stationary and dynamic charging scenarios. This paper reviewed the technologies in the WPT area applicable to EV wireless charging. By introducing WPT in EVs, the obstacles of charging time, range, and cost can be easily mitigated. Battery technology is no longer relevant in the mass market penetration of EVs. It is hoped that researchers could be encouraged by the state-of-the-art achievements, and push forward the further development of WPT as well as the expansion of EV.

1,603 citations