scispace - formally typeset
Author

Srinivas Devadas

Bio: Srinivas Devadas is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topic(s): Sequential logic & Combinational logic. The author has an hindex of 88, co-authored 480 publication(s) receiving 31897 citation(s). Previous affiliations of Srinivas Devadas include University of California, Berkeley & Cornell University.


Papers
More filters
Proceedings ArticleDOI
04 Jun 2007
TL;DR: This work presents PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describes how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.
Abstract: Physical Unclonable Functions (PUFs) are innovative circuit primitives that extract secrets from physical characteristics of integrated circuits (ICs). We present PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describe how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.

1,965 citations

Proceedings ArticleDOI
18 Nov 2002
TL;DR: It is argued that a complex integrated circuit can be viewed as a silicon PUF and a technique to identify and authenticate individual integrated circuits (ICs) is described.
Abstract: We introduce the notion of a Physical Random Function (PUF). We argue that a complex integrated circuit can be viewed as a silicon PUF and describe a technique to identify and authenticate individual integrated circuits (ICs).We describe several possible circuit realizations of different PUFs. These circuits have been implemented in commodity Field Programmable Gate Arrays (FPGAs). We present experiments which indicate that reliable authentication of individual FPGAs can be performed even in the presence of significant environmental variations.We describe how secure smart cards can be built, and also briefly describe how PUFs can be applied to licensing and certification applications.

1,437 citations

Journal ArticleDOI
TL;DR: It is shown that arbiter-based PUFs are realizable and well suited to build key-cards that need to be resistant to physical attacks and to be identified securely and reliably over a practical range of environmental variations such as temperature and power supply voltage.
Abstract: Modern cryptographic protocols are based on the premise that only authorized participants can obtain secret keys and access to information systems. However, various kinds of tampering methods have been devised to extract secret keys from conditional access systems such as smartcards and ATMs. Arbiter-based physical unclonable functions (PUFs) exploit the statistical delay variation of wires and transistors across integrated circuits (ICs) in manufacturing processes to build unclonable secret keys. We fabricated arbiter-based PUFs in custom silicon and investigated the identification capability, reliability, and security of this scheme. Experimental results and theoretical studies show that a sufficient amount of inter-chip variation exists to enable each IC to be identified securely and reliably over a practical range of environmental variations such as temperature and power supply voltage. We show that arbiter-based PUFs are realizable and well suited to build, for example, key-cards that need to be resistant to physical attacks.

885 citations

Posted Content
TL;DR: In this article, the authors present a detailed and structured presentation of the publicly available information on SGX, a series of intelligent guesses about some important but undocumented aspects of SGX.
Abstract: Intel’s Software Guard Extensions (SGX) is a set of extensions to the Intel architecture that aims to provide integrity and confidentiality guarantees to securitysensitive computation performed on a computer where all the privileged software (kernel, hypervisor, etc) is potentially malicious. This paper analyzes Intel SGX, based on the 3 papers [14, 78, 137] that introduced it, on the Intel Software Developer’s Manual [100] (which supersedes the SGX manuals [94, 98]), on an ISCA 2015 tutorial [102], and on two patents [108, 136]. We use the papers, reference manuals, and tutorial as primary data sources, and only draw on the patents to fill in missing information. This paper’s contributions are a summary of the Intel-specific architectural and micro-architectural details needed to understand SGX, a detailed and structured presentation of the publicly available information on SGX, a series of intelligent guesses about some important but undocumented aspects of SGX, and an analysis of SGX’s security properties.

830 citations

Proceedings ArticleDOI
07 Oct 2004
TL;DR: This work presents a simple architectural mechanism called dynamic information flow tracking that can significantly improve the security of computing systems with negligible performance overhead and is transparent to users or application programmers.
Abstract: We present a simple architectural mechanism called dynamic information flow tracking that can significantly improve the security of computing systems with negligible performance overhead. Dynamic information flow tracking protects programs against malicious software attacks by identifying spurious information flows from untrusted I/O and restricting the usage of the spurious information.Every security attack to take control of a program needs to transfer the program's control to malevolent code. In our approach, the operating system identifies a set of input channels as spurious, and the processor tracks all information flows from those inputs. A broad range of attacks are effectively defeated by checking the use of the spurious values as instructions and pointers.Our protection is transparent to users or application programmers; the executables can be used without any modification. Also, our scheme only incurs, on average, a memory overhead of 1.4% and a performance overhead of 1.1%.

782 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Abstract: Today’s smartphone operating systems frequently fail to provide users with visibility into how third-party applications collect and share their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid enables realtime analysis by leveraging Android’s virtualized execution environment. TaintDroid incurs only 32p performance overhead on a CPU-bound microbenchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, in our 2010 study we found 20 applications potentially misused users’ private information; so did a similar fraction of the tested applications in our 2012 study. Monitoring the flow of privacy-sensitive data with TaintDroid provides valuable input for smartphone users and security service firms seeking to identify misbehaving applications.

2,805 citations

Proceedings ArticleDOI
04 Oct 2010
TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.
Abstract: Today's smartphone operating systems frequently fail to provide users with adequate control over and visibility into how third-party applications use their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid provides realtime analysis by leveraging Android's virtualized execution environment. TaintDroid incurs only 14% performance overhead on a CPU-bound micro-benchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, we found 68 instances of potential misuse of users' private information across 20 applications. Monitoring sensitive data with TaintDroid provides informed use of third-party applications for phone users and valuable input for smartphone security service firms seeking to identify misbehaving applications.

2,378 citations

Journal ArticleDOI
TL;DR: The OBDD data structure is described and a number of applications that have been solved by OBDd-based symbolic analysis are surveyed.
Abstract: Ordered Binary-Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satisfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as graph algorithms on OBDD data structures. Using OBDDs, a wide variety of problems can be solved through symbolic analysis. First, the possible variations in system parameters and operating conditions are encoded with Boolean variables. Then the system is evaluated for all variations by a sequence of OBDD operations. Researchers have thus solved a number of problems in digital-system design, finite-state system analysis, artificial intelligence, and mathematical logic. This paper describes the OBDD data structure and surveys a number of applications that have been solved by OBDD-based symbolic analysis.

2,128 citations

Proceedings ArticleDOI
04 Jun 2007
TL;DR: This work presents PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describes how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.
Abstract: Physical Unclonable Functions (PUFs) are innovative circuit primitives that extract secrets from physical characteristics of integrated circuits (ICs). We present PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describe how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.

1,965 citations

Proceedings Article
01 Jan 2007

1,721 citations