scispace - formally typeset
Search or ask a question
Author

Srivari Chandrasekhar

Bio: Srivari Chandrasekhar is an academic researcher from Indian Institute of Chemical Technology. The author has contributed to research in topics: Total synthesis & Catalysis. The author has an hindex of 42, co-authored 453 publications receiving 7798 citations. Previous affiliations of Srivari Chandrasekhar include Academy of Scientific and Innovative Research & University of Texas Southwestern Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an attempt to consolidate and critically analyse the research work carried out so far on the processing, properties and application of rice husk silica in various laboratories and also highlighting some results on processing and characterization of RHA and reactive silica obtained from it in the authors' laboratory.
Abstract: Rice husk is an abundantly available waste material in all rice producing countries. In certain regions, it is sometimes used as a fuel for parboiling paddy in the rice mills. The partially burnt rice husk in turn contributes to more environmental pollution. There have been efforts not only to overcome this but also to find value addition to these wastes using them as secondary source of materials. Rice husk contains nearly 20% silica, which is present in hydrated amorphous form. On thermal treatment, the silica converts to crystobalite, which is a crystalline form of silica. However, under controlled burning conditions, amorphous silica with high reactivity, ultra fine size and large surface area is produced. This micro silica can be a source for preparing advanced materials like SiC, Si3N4, elemental Si and Mg2Si. Due to the high pozzolanic activity, this rice husk silica also finds application in high strength concrete as a substitute for silica fume. Possibility of using this silica as filler in polymers is also studied. The present paper is an attempt to consolidate and critically analyse the research work carried out so far on the processing, properties and application of rice husk silica in various laboratories and also highlighting some results on the processing and characterization of RHA and reactive silica obtained from it in the authors' laboratory.

432 citations

Journal ArticleDOI
TL;DR: This new approach seems to be very promising in the development of leads for both medicinal and agrochemical applications, as the biological activity of several new hybrids exceeds that of the parent compounds.
Abstract: Natural products play an important role in the development of drugs, especially for the treatment of infections and cancer, as well as immunosuppressive compounds. However, the number of natural products is limited, whereas millions of hybrids as combinations of parts of different natural products can be prepared. This new approach seems to be very promising in the development of leads for both medicinal and agrochemical applications, as the biological activity of several new hybrids exceeds that of the parent compounds. The advantage of this concept over a combinatorial chemistry approach is the high diversity and the inherent biological activity of the hybrids.

418 citations

Journal ArticleDOI
TL;DR: PEG has been used as a solvent medium for regioselective Heck reactions with easy recyclability of solvent and Pd catalyst for the first time.

270 citations

Journal ArticleDOI
TL;DR: TaCl5−SiO2 has been used as an efficient Lewis acid catalyst for the three component coupling of carbonyl compounds, aromatic amines and diethyl phosphite to produce α-amino phosphonates as discussed by the authors.

202 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012, and the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide.
Abstract: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a “natural product mimic”, or “NM”, to join the original primary divisions and the designation “natural product botanical”, or “NB”, to cover those botanical “defined mixtures” now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over t...

4,337 citations

Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: The inversion of the classical reactivity (Umpolung) opens up new synthetic pathways in biochemical processes as nucleophilic acylations and in nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical process as nucleophile acylation.
Abstract: In the investigation of efficient chemical transformations, the carbon-carbon bond-forming reactions play an outstanding role. In this context, organocatalytic processes have achieved considerable attention. 1 Beside their facile reaction course, selectivity, and environmental friendliness, new synthetic strategies are made possible. Particularly, the inversion of the classical reactivity (Umpolung) opens up new synthetic pathways. 2 In nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical processes as nucleophilic acylations. 3 The catalytically active species is a nucleophilic carbene. 4

2,351 citations