scispace - formally typeset
Search or ask a question
Author

Stacey Donnelly

Bio: Stacey Donnelly is an academic researcher from Broad Institute. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 6, co-authored 9 publications receiving 11075 citations.

Papers
More filters
Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel2, Eric Vallabh Minikel1, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria3, James S. Ware, Andrew J. Hill2, Andrew J. Hill4, Andrew J. Hill1, Beryl B. Cummings2, Beryl B. Cummings1, Taru Tukiainen1, Taru Tukiainen2, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan2, Laramie E. Duncan1, Karol Estrada2, Karol Estrada1, Fengmei Zhao2, Fengmei Zhao1, James Zou2, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein2, Jackie Goldstein1, Namrata Gupta2, Daniel P. Howrigan2, Daniel P. Howrigan1, Adam Kiezun2, Mitja I. Kurki2, Mitja I. Kurki1, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas1, Brett Thomas2, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler2, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez1, Jose C. Florez2, Stacey Gabriel2, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll1, Steven A. McCarroll2, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale2, Benjamin M. Neale1, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan21, Patrick F. Sullivan14, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins17, Hugh Watkins16, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur2, Daniel G. MacArthur1 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

Posted ContentDOI
Konrad J. Karczewski1, Konrad J. Karczewski2, Laurent C. Francioli2, Laurent C. Francioli1, Grace Tiao1, Grace Tiao2, Beryl B. Cummings2, Beryl B. Cummings1, Jessica Alföldi1, Jessica Alföldi2, Qingbo Wang1, Qingbo Wang2, Ryan L. Collins1, Ryan L. Collins2, Kristen M. Laricchia1, Kristen M. Laricchia2, Andrea Ganna1, Andrea Ganna3, Andrea Ganna2, Daniel P. Birnbaum1, Laura D. Gauthier1, Harrison Brand2, Harrison Brand1, Matthew Solomonson2, Matthew Solomonson1, Nicholas A. Watts2, Nicholas A. Watts1, Daniel R. Rhodes4, Moriel Singer-Berk1, Eleanor G. Seaby2, Eleanor G. Seaby1, Jack A. Kosmicki1, Jack A. Kosmicki2, Raymond K. Walters1, Raymond K. Walters2, Katherine Tashman2, Katherine Tashman1, Yossi Farjoun1, Eric Banks1, Timothy Poterba1, Timothy Poterba2, Arcturus Wang2, Arcturus Wang1, Cotton Seed1, Cotton Seed2, Nicola Whiffin1, Nicola Whiffin5, Jessica X. Chong6, Kaitlin E. Samocha7, Emma Pierce-Hoffman1, Zachary Zappala1, Zachary Zappala8, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria9, Eric Vallabh Minikel1, Ben Weisburd1, Monkol Lek10, Monkol Lek1, James S. Ware5, James S. Ware1, Christopher Vittal1, Christopher Vittal2, Irina M. Armean2, Irina M. Armean11, Irina M. Armean1, Louis Bergelson1, Kristian Cibulskis1, Kristen M. Connolly1, Miguel Covarrubias1, Stacey Donnelly1, Steven Ferriera1, Stacey Gabriel1, Jeff Gentry1, Namrata Gupta1, Thibault Jeandet1, Diane Kaplan1, Christopher Llanwarne1, Ruchi Munshi1, Sam Novod1, Nikelle Petrillo1, David Roazen1, Valentin Ruano-Rubio1, Andrea Saltzman1, Molly Schleicher1, Jose Soto1, Kathleen Tibbetts1, Charlotte Tolonen1, Gordon Wade1, Michael E. Talkowski1, Michael E. Talkowski2, Benjamin M. Neale2, Benjamin M. Neale1, Mark J. Daly1, Daniel G. MacArthur2, Daniel G. MacArthur1 
30 Jan 2019-bioRxiv
TL;DR: Using an improved human mutation rate model, human protein-coding genes are classified along a spectrum representing tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.
Abstract: Summary Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes critical for an organism’s function will be depleted for such variants in natural populations, while non-essential genes will tolerate their accumulation. However, predicted loss-of-function (pLoF) variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes. Here, we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence pLoF variants in this cohort after filtering for sequencing and annotation artifacts. Using an improved model of human mutation, we classify human protein-coding genes along a spectrum representing intolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.

1,128 citations

Journal ArticleDOI
TL;DR: A disease locus for Wolff-Parkinson-White syndrome (WPW) and familial hypertrophic cardiomyopathy (FHC) segregating in a large kindred to chromosome 7 band q3 is mapped.
Abstract: We have mapped a disease locus for Wolff-Parkinson-White syndrome (WPW) and familial hypertrophic cardiomyopathy (FHC) segregating in a large kindred to chromosome 7 band q3. Although WPW syndrome and FHC have been observed in members of the same family in prior studies, the relationship between these two diseases has remained enigmatic. A large family with 25 surviving individuals who are affected by one or both of these conditions was studied. The disease locus is closely linked to loci D7S688, D7S505, and D7S483 (maximum two point LOD score at D7S505 was 7.80 at theta = 0). While four different FHC loci have been described this is the first locus that can be mutated to cause both WPW and/or FHC.

206 citations

Journal ArticleDOI
Konrad J. Karczewski1, Konrad J. Karczewski2, Laurent C. Francioli1, Laurent C. Francioli2, Grace Tiao2, Grace Tiao1, Beryl B. Cummings2, Beryl B. Cummings1, Jessica Alföldi2, Jessica Alföldi1, Qingbo Wang1, Qingbo Wang2, Ryan L. Collins1, Ryan L. Collins2, Kristen M. Laricchia1, Kristen M. Laricchia2, Andrea Ganna2, Andrea Ganna3, Andrea Ganna1, Daniel P. Birnbaum1, Daniel P. Birnbaum2, Laura D. Gauthier2, Harrison Brand1, Harrison Brand2, Matthew Solomonson2, Matthew Solomonson1, Nicholas A. Watts1, Nicholas A. Watts2, Daniel R. Rhodes4, Moriel Singer-Berk1, Moriel Singer-Berk2, Eleina M. England1, Eleina M. England2, Eleanor G. Seaby1, Eleanor G. Seaby2, Jack A. Kosmicki1, Jack A. Kosmicki2, Raymond K. Walters1, Raymond K. Walters2, Katherine Tashman1, Katherine Tashman2, Yossi Farjoun2, Eric Banks2, Timothy Poterba1, Timothy Poterba2, Arcturus Wang2, Arcturus Wang1, Cotton Seed2, Cotton Seed1, Nicola Whiffin, Jessica X. Chong5, Kaitlin E. Samocha6, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Zachary Zappala7, Zachary Zappala2, Zachary Zappala1, Anne H. O’Donnell-Luria, Eric Vallabh Minikel2, Ben Weisburd2, Monkol Lek8, James S. Ware9, James S. Ware2, Christopher Vittal1, Christopher Vittal2, Irina M. Armean1, Irina M. Armean2, Louis Bergelson2, Kristian Cibulskis2, Kristen M. Connolly2, Miguel Covarrubias2, Stacey Donnelly2, Steven Ferriera2, Stacey Gabriel2, Jeff Gentry2, Namrata Gupta2, Thibault Jeandet2, Diane Kaplan2, Christopher Llanwarne2, Ruchi Munshi2, Sam Novod2, Nikelle Petrillo2, David Roazen2, Valentin Ruano-Rubio2, Andrea Saltzman2, Molly Schleicher2, Jose Soto2, Kathleen Tibbetts2, Charlotte Tolonen2, Gordon Wade2, Michael E. Talkowski1, Michael E. Talkowski2, Benjamin M. Neale2, Benjamin M. Neale1, Mark J. Daly, Daniel G. MacArthur 
03 Feb 2021-Nature

56 citations


Cited by
More filters
Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

Journal ArticleDOI
11 Oct 2018-Nature
TL;DR: Deep phenotype and genome-wide genetic data from 500,000 individuals from the UK Biobank is described, describing population structure and relatedness in the cohort, and imputation to increase the number of testable variants to 96 million.
Abstract: The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.

4,489 citations

Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Abstract: Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

3,289 citations

Journal ArticleDOI
05 Jan 2018-Science
TL;DR: Examination of the oral and gut microbiome of melanoma patients undergoing anti-programmed cell death 1 protein (PD-1) immunotherapy suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients.
Abstract: Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.

2,791 citations

Journal ArticleDOI
TL;DR: ClinVar continues to make improvements to its search and retrieval functions.
Abstract: ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.

2,345 citations