scispace - formally typeset
Search or ask a question
Author

Stacey Langfitt Hendrickson

Bio: Stacey Langfitt Hendrickson is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Human reliability & Brainstorming. The author has an hindex of 5, co-authored 18 publications receiving 137 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment, and a number of lessons learned is presented in order to aid in the design of future HRA benchmarking endeavors.

72 citations

Journal Article
TL;DR: This document provides a methodology and guidance for conducting a fire HRA, which includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty, and three approaches to quantification: screening, scoping, and detailed HRA.
Abstract: During the 1990s, the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, 'Individual Plant Examination - External Events' (IPEEE). This effort produced a Fire Risk Assessment methodology for operations at power that was used by the majority of U.S. nuclear power plants (NPPs) in support of the IPEEE program and several NPPs overseas. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that they required upgrades to support current requirements for risk-informed, performance-based (RI/PB) applications. In 2001, EPRI and the USNRC's Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support a new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled 'Fire PRA Methodology for Nuclear Power Facilities' which addressed fire risk for at power operations. NUREG/CR-6850 developed high level guidance on the process for identification and inclusion of human failure events (HFEs) into the fire PRA (FPRA), and a methodology for assigning quantitative screening values to these HFEs. It outlinedmore » the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate human error probabilities (HEPs). However, NUREG/CR-6850 did not describe a methodology to develop best-estimate HEPs given the PSFs and the fire-related effects. In 2007, EPRI and RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human failure events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This document provides a methodology and guidance for conducting a fire HRA. This process includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty. This document provides three approaches to quantification: screening, scoping, and detailed HRA. Screening is based on the guidance in NUREG/CR-6850, with some additional guidance for scenarios with long time windows. Scoping is a new approach to quantification developed specifically to support the iterative nature of fire PRA quantification. Scoping is intended to provide less conservative HEPs than screening, but requires fewer resources than a detailed HRA analysis. For detailed HRA quantification, guidance has been developed on how to apply existing methods to assess post-fire fire HEPs.« less

20 citations

Journal ArticleDOI
TL;DR: The data indicate that work-relevant challenges are better solved by aggregating electronic individual responses rather than by electronically convening a group, and large nominal groups may be more appropriate corporate problem-solving vehicles.
Abstract: Objective: An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Background: Although industrial ...

17 citations

01 Jun 2010
TL;DR: In this article, the authors present a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors, and identify potential failure mechanisms using the mid-layer model.
Abstract: The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

7 citations

01 Jun 2012
TL;DR: In this paper, the authors present the results of a literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020.
Abstract: This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

5 citations


Cited by
More filters
Posted Content
TL;DR: Naturalistic decision-making as mentioned in this paper is based on observations of humans acting under real-life constraints such as time pressure, high stakes, personal responsibility, and shifting conditions, which can be used by professionals in management, psychology, engineering, and other fields.
Abstract: Anyone who watches the television news has seen images of firefighters rescuing people from burning buildings and paramedics treating bombing victims. How do these individuals make the split-second decisions that save lives? Most studies of decision making, based on artificial tasks assigned in laboratory settings, view people as biased and unskilled. Gary Klein is one of the developers of the naturalistic decision-making approach, which views people as inherently skilled and experienced. Since 1985, Klein has conducted fieldwork to find out how people tackle challenges in difficult, nonroutine situations. Sources of Power is based on observations of humans acting under such real-life constraints as time pressure, high stakes, personal responsibility, and shifting conditions. In addition to providing information that can be used by professionals in management, psychology, engineering, and other fields, the book presents an overview of the research approach of naturalistic decision making and expands our knowledge of the strengths people bring to difficult tasks.

174 citations

Journal ArticleDOI
TL;DR: The SPAR-H BN can be used as a starting point for translating HRA research efforts and advances in scientific understanding into real, timely benefits for HRA practitioners.

103 citations