scispace - formally typeset
Search or ask a question
Author

Stacey M. Bagby

Bio: Stacey M. Bagby is an academic researcher from Anschutz Medical Campus. The author has contributed to research in topics: Cancer & Melanoma. The author has an hindex of 17, co-authored 50 publications receiving 670 citations. Previous affiliations of Stacey M. Bagby include University of Colorado Denver & University of Colorado Boulder.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Hu-CB-BRGS mice represent an in vivo model to study immune checkpoint blockade to human tumors and provide a relevant preclinical animal model to facilitate prioritization of hypothesis-driven combination immunotherapies.
Abstract: The success of agents that reverse T-cell inhibitory signals, such as anti-PD-1/PD-L1 therapies, has reinvigorated cancer immunotherapy research. However, since only a minority of patients respond to single-agent therapies, methods to test the potential anti-tumor activity of rational combination therapies are still needed. Conventional murine xenograft models have been hampered by their immune-compromised status; thus, we developed a hematopoietic humanized mouse model, hu-CB-BRGS, and used it to study anti-tumor human immune responses to triple-negative breast cancer (TNBC) cell line and patient-derived colorectal cancer (CRC) xenografts (PDX). BALB/c-Rag2nullIl2rγnullSIRPαNOD (BRGS) pups were humanized through transplantation of cord blood (CB)-derived CD34+ cells. Mice were evaluated for human chimerism in the blood and assigned into experimental untreated or nivolumab groups based on chimerism. TNBC cell lines or tumor tissue from established CRC PDX models were implanted into both flanks of humanized mice and treatments ensued once tumors reached a volume of ~150mm3. Tumors were measured twice weekly. At end of study, immune organs and tumors were collected for immunological assessment. Humanized PDX models were successfully established with a high frequency of tumor engraftment. Humanized mice treated with anti-PD-1 exhibited increased anti-tumor human T-cell responses coupled with decreased Treg and myeloid populations that correlated with tumor growth inhibition. Combination therapies with anti-PD-1 treatment in TNBC-bearing mice reduced tumor growth in multi-drug cohorts. Finally, as observed in human colorectal patients, anti-PD-1 therapy had a strong response to a microsatellite-high CRC PDX that correlated with a higher number of human CD8+ IFNγ+ T cells in the tumor. Hu-CB-BRGS mice represent an in vivo model to study immune checkpoint blockade to human tumors. The human immune system in the mice is inherently suppressed, similar to a tumor microenvironment, and thus allows growth of human tumors. However, the suppression can be released by anti-PD-1 therapies and inhibit tumor growth of some tumors. The model offers ample access to lymph and tumor cells for in-depth immunological analysis. The tumor growth inhibition correlates with increased CD8 IFNγ+ tumor infiltrating T cells. These hu-CB-BRGS mice provide a relevant preclinical animal model to facilitate prioritization of hypothesis-driven combination immunotherapies.

114 citations

Journal ArticleDOI
TL;DR: Analysis of patient-derived xenografts from melanoma, colon, and pancreatic cancer tissues reveals a previously unrecognized role for CDK1 in regulating tumor-initiating capacity in melanoma and suggests a novel treatment strategy in cancer via interruption ofCDK1 function and its protein-protein interactions.
Abstract: Cancers are composed of heterogeneous subpopulations with various tumor-initiating capacities, yet key stem cell genes associated with enhanced tumor-initiating capacities and their regulatory mechanisms remain elusive. Here, we analyzed patient-derived xenografts from melanoma, colon, and pancreatic cancer tissues and identified enrichment of tumor-initiating cells in MHC class I-hi cells, where CDK1, a master regulator of the cell cycle, was upregulated. Overexpression of CDK1, but not its kinase-dead variant, in melanoma cells increased their spheroid forming ability, tumorigenic potential, and tumor-initiating capacity; inhibition of CDK1 with pharmacologic agents reduced these characteristics, which was unexplained by the role of CDK1 in regulating the cell cycle. Proteomic analysis revealed an interaction between CDK1 and the pluripotent stem cell transcription factor Sox2. Blockade or knockdown of CDK1 resulted in reduced phosphorylation, nuclear localization, and transcriptional activity of Sox2. Knockout of Sox2 in CDK1-overexpressing cells reduced CDK1-driven tumor-initiating capacity substantially. Furthermore, GSEA analysis of CDK1hi tumor cells identified a pathway signature common in all three cancer types, including E2F, G2M, MYC, and spermatogenesis, confirming a stem-like nature of CDK1hi tumor cells. These findings reveal a previously unrecognized role for CDK1 in regulating tumor-initiating capacity in melanoma and suggest a novel treatment strategy in cancer via interruption of CDK1 function and its protein-protein interactions. SIGNIFICANCE: These findings uncover CDK1 as a new regulator of Sox2 during tumor initiation and implicate the CDK1-Sox2 interaction as a potential therapeutic target in cancer.

81 citations

Journal ArticleDOI
TL;DR: The efficacy of cabozantinib is determined in a preclinical CRC patient‐derived tumor xenograft model and potent inhibitory effects on tumor growth are demonstrated in 80% of tumors treated.
Abstract: Antiangiogenic therapy is commonly used for the treatment of colorectal cancer (CRC). Although patients derive some clinical benefit, treatment resistance inevitably occurs. The MET signaling pathway has been proposed to be a major contributor of resistance to antiangiogenic therapy. MET is upregulated in response to vascular endothelial growth factor pathway inhibition and plays an essential role in tumorigenesis and progression of tumors. In this study, we set out to determine the efficacy of cabozantinib in a preclinical CRC patient-derived tumor xenograft model. We demonstrate potent inhibitory effects on tumor growth in 80% of tumors treated. The greatest antitumor effects were observed in tumors that possess a mutation in the PIK3CA gene. The underlying antitumor mechanisms of cabozantinib consisted of inhibition of angiogenesis and Akt activation and significantly decreased expression of genes involved in the PI3K pathway. These findings support further evaluation of cabozantinib in patients with CRC. PIK3CA mutation as a predictive biomarker of sensitivity is intriguing and warrants further elucidation. A clinical trial of cabozantinib in refractory metastatic CRC is being activated.

51 citations

Journal ArticleDOI
TL;DR: This study used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma, and suggested dual targeting of MCL 1 and BclXL should be considered as a treatment option for difficult-to-treat melanoma patients.
Abstract: Current treatment for patients with metastatic melanoma include molecular-targeted therapies and immune checkpoint inhibitors. However, a subset of melanomas are difficult-to-treat. These melanomas include those without the genetic markers for targeted therapy, non-responsive to immunotherapy, and those who have relapsed or exhausted their therapeutic options. Therefore, it is necessary to understand and explore other biological processes that may provide new therapeutic approaches. One of most appealing is targeting the apoptotic/anti-apoptotic system that is effective against leukemia. We used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma. We then examined the effects of combining BH3 mimetics to target MCL1 and BCLXL in vitro and in vivo. These include clinical-trial-ready compounds such as ABT-263 (Navitoclax) and S63845/S64315 (MIK655). We used cell lines derived from patients with difficult-to-treat melanomas. In vitro, the combined inhibition of MCL1 and BCLXL resulted in significantly effective cell killing compared to single-agent treatment (p 0.40). Taken together, this study suggests that dual targeting of MCL1 and BCLXL should be considered as a treatment option for difficult-to-treat melanoma patients.

43 citations

Journal ArticleDOI
17 Nov 2014-PLOS ONE
TL;DR: The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.
Abstract: Background The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). Materials and Methods The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. Results The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. Conclusions The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors are discussed.
Abstract: Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

1,250 citations

Journal ArticleDOI
TL;DR: An update on the latest advances in the clinical development of treatment strategies targeting cancer stem cells with rational combinations of agents to inhibit possible compensatory escape mechanisms is provided.
Abstract: During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents

976 citations

Journal ArticleDOI
TL;DR: This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Abstract: Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.

690 citations

Journal ArticleDOI
TL;DR: Patient derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology as mentioned in this paper, and the ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions.
Abstract: Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.

506 citations