scispace - formally typeset
Search or ask a question
Author

Stamatia Giannarou

Other affiliations: Imperial College Healthcare
Bio: Stamatia Giannarou is an academic researcher from Imperial College London. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 17, co-authored 65 publications receiving 1198 citations. Previous affiliations of Stamatia Giannarou include Imperial College Healthcare.


Papers
More filters
Journal ArticleDOI
TL;DR: Interventional healthcare will evolve from an artisanal craft based on the individual experiences, preferences and traditions of physicians into a discipline that relies on objective decision-making on the basis of large-scale data from heterogeneous sources.
Abstract: Interventional healthcare will evolve from an artisanal craft based on the individual experiences, preferences and traditions of physicians into a discipline that relies on objective decision-making on the basis of large-scale data from heterogeneous sources.

289 citations

Journal ArticleDOI
11 Jan 2016
TL;DR: The current role of machine learning techniques in the context of surgery with a focus on surgical robotics (SR) is reviewed and a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room is provided.
Abstract: Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.

194 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a consensus definition for Surgical Data Science, identify associated challenges and opportunities, and provide a roadmap for advancing the field, based on discussions during an intensive two-day international interactive workshop that brought together leading researchers working in the related field of computer assisted interventions.
Abstract: This paper introduces Surgical Data Science as an emerging scientific discipline. Key perspectives are based on discussions during an intensive two-day international interactive workshop that brought together leading researchers working in the related field of computer and robot assisted interventions. Our consensus opinion is that increasing access to large amounts of complex data, at scale, throughout the patient care process, complemented by advances in data science and machine learning techniques, has set the stage for a new generation of analytics that will support decision-making and quality improvement in interventional medicine. In this article, we provide a consensus definition for Surgical Data Science, identify associated challenges and opportunities and provide a roadmap for advancing the field.

129 citations

Journal ArticleDOI
TL;DR: A novel probabilistic framework to track affine-invariant anisotropic regions under contrastingly different visual appearances during Minimally Invasive Surgery (MIS) is proposed and a real-time implementation exploiting the computational power of the GPU is proposed.
Abstract: Despite a wide range of feature detectors developed in the computer vision community over the years, direct application of these techniques to surgical navigation has shown significant difficulties due to the paucity of reliable salient features coupled with free--form tissue deformation and changing visual appearance of surgical scenes. The aim of this paper is to propose a novel probabilistic framework to track affine-invariant anisotropic regions under contrastingly different visual appearances during Minimally Invasive Surgery (MIS). The theoretical background of the affine-invariant anisotropic feature detector is presented and a real-time implementation exploiting the computational power of the GPU is proposed. An Extended Kalman Filter (EKF) parameterization scheme is used to adaptively adjust the optimal templates of the detected regions, enabling accurate identification and matching of the tracked features. For effective tracking verification, spatial context and region similarity have also been incorporated. They are used to boost the prediction of the EKF and recover potential tracking failure due to drift or false positives. The proposed framework is compared to the existing methods and their respective performance is evaluated with in vivo video sequences recorded from robotic-assisted MIS procedures, as well as real-world scenes.

88 citations

Journal ArticleDOI
TL;DR: Key technical considerations of tissue deformation tracking, 3D reconstruction, subject-specific modeling, image guidance and augmented reality for robotic assisted minimally invasive surgery are described.

70 citations


Cited by
More filters
Journal ArticleDOI
Eric J. Topol1
TL;DR: Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient–doctor relationship or facilitate its erosion remains to be seen.
Abstract: The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.

2,574 citations

Journal ArticleDOI
TL;DR: How these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems are described.
Abstract: Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.

1,843 citations

Journal ArticleDOI
TL;DR: The results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors.
Abstract: Although anaesthesiologists strive to avoid hypoxemia during surgery, reliably predicting future intraoperative hypoxemia is not currently possible. Here, we report the development and testing of a machine-learning-based system that, in real time during general anaesthesia, predicts the risk of hypoxemia and provides explanations of the risk factors. The system, which was trained on minute-by-minute data from the electronic medical records of over fifty thousand surgeries, improved the performance of anaesthesiologists when providing interpretable hypoxemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxemia events, with this system's assistance they would anticipate 30% of them, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain patient or procedure characteristics.

956 citations

01 Dec 2004
TL;DR: In this article, a novel technique for detecting salient regions in an image is described, which is a generalization to affine invariance of the method introduced by Kadir and Brady.
Abstract: In this paper we describe a novel technique for detecting salient regions in an image. The detector is a generalization to affine invariance of the method introduced by Kadir and Brady [10]. The detector deems a region salient if it exhibits unpredictability in both its attributes and its spatial scale.

501 citations