scispace - formally typeset
Search or ask a question
Author

Stamatios Lefkimmiatis

Bio: Stamatios Lefkimmiatis is an academic researcher from Skolkovo Institute of Science and Technology. The author has contributed to research in topics: Deblurring & Image restoration. The author has an hindex of 17, co-authored 42 publications receiving 1727 citations. Previous affiliations of Stamatios Lefkimmiatis include University of California, Los Angeles & École Normale Supérieure.

Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this article, the authors proposed a non-local image denoising network based on variational methods that exploit the inherent nonlocal self-similarity property of natural images and showed that the proposed network achieved state-of-the-art performance on the Berkeley segmentation dataset.
Abstract: We propose a novel deep network architecture for grayscale and color image denoising that is based on a non-local image model. Our motivation for the overall design of the proposed network stems from variational methods that exploit the inherent non-local self-similarity property of natural images. We build on this concept and introduce deep networks that perform non-local processing and at the same time they significantly benefit from discriminative learning. Experiments on the Berkeley segmentation dataset, comparing several state-of-the-art methods, show that the proposed non-local models achieve the best reported denoising performance both for grayscale and color images for all the tested noise levels. It is also worth noting that this increase in performance comes at no extra cost on the capacity of the network compared to existing alternative deep network architectures. In addition, we highlight a direct link of the proposed non-local models to convolutional neural networks. This connection is of significant importance since it allows our models to take full advantage of the latest advances on GPU computing in deep learning and makes them amenable to efficient implementations through their inherent parallelism.

335 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: A novel network architecture for learning discriminative image models that are employed to efficiently tackle the problem of grayscale and color image denoising is designed and two different variants are introduced, which achieve excellent results under additive white Gaussian noise.
Abstract: We design a novel network architecture for learning discriminative image models that are employed to efficiently tackle the problem of grayscale and color image denoising. Based on the proposed architecture, we introduce two different variants. The first network involves convolutional layers as a core component, while the second one relies instead on non-local filtering layers and thus it is able to exploit the inherent non-local self-similarity property of natural images. As opposed to most of the existing deep network approaches, which require the training of a specific model for each considered noise level, the proposed models are able to handle a wide range of noise levels using a single set of learned parameters, while they are very robust when the noise degrading the latent image does not match the statistics of the noise used during training. The latter argument is supported by results that we report on publicly available images corrupted by unknown noise and which we compare against solutions obtained by competing methods. At the same time the introduced networks achieve excellent results under additive white Gaussian noise (AWGN), which are comparable to those of the current state-of-the-art network, while they depend on a more shallow architecture with the number of trained parameters being one order of magnitude smaller. These properties make the proposed networks ideal candidates to serve as sub-solvers on restoration methods that deal with general inverse imaging problems such as deblurring, demosaicking, superresolution, etc.

241 citations

Journal ArticleDOI
TL;DR: It is shown that the resulting regularizers retain some of the most favorable properties of TV, i.e., convexity, homogeneity, rotation, and translation invariance, while dealing effectively with the staircase effect.
Abstract: We present nonquadratic Hessian-based regularization methods that can be effectively used for image restoration problems in a variational framework. Motivated by the great success of the total-variation (TV) functional, we extend it to also include second-order differential operators. Specifically, we derive second-order regularizers that involve matrix norms of the Hessian operator. The definition of these functionals is based on an alternative interpretation of TV that relies on mixed norms of directional derivatives. We show that the resulting regularizers retain some of the most favorable properties of TV, i.e., convexity, homogeneity, rotation, and translation invariance, while dealing effectively with the staircase effect. We further develop an efficient minimization scheme for the corresponding objective functions. The proposed algorithm is of the iteratively reweighted least-square type and results from a majorization-minimization approach. It relies on a problem-specific preconditioned conjugate gradient method, which makes the overall minimization scheme very attractive since it can be applied effectively to large images in a reasonable computational time. We validate the overall proposed regularization framework through deblurring experiments under additive Gaussian noise on standard and biomedical images.

231 citations

Posted Content
TL;DR: In this article, the authors proposed a non-local image denoising network based on variational methods that exploit the inherent nonlocal self-similarity property of natural images and showed that the proposed network achieved state-of-the-art performance on the Berkeley segmentation dataset.
Abstract: We propose a novel deep network architecture for grayscale and color image denoising that is based on a non-local image model. Our motivation for the overall design of the proposed network stems from variational methods that exploit the inherent non-local self-similarity property of natural images. We build on this concept and introduce deep networks that perform non-local processing and at the same time they significantly benefit from discriminative learning. Experiments on the Berkeley segmentation dataset, comparing several state-of-the-art methods, show that the proposed non-local models achieve the best reported denoising performance both for grayscale and color images for all the tested noise levels. It is also worth noting that this increase in performance comes at no extra cost on the capacity of the network compared to existing alternative deep network architectures. In addition, we highlight a direct link of the proposed non-local models to convolutional neural networks. This connection is of significant importance since it allows our models to take full advantage of the latest advances on GPU computing in deep learning and makes them amenable to efficient implementations through their inherent parallelism.

175 citations

Journal ArticleDOI
TL;DR: A novel family of invariant, convex, and non-quadratic functionals is introduced that is employed to derive regularized solutions of ill-posed linear inverse imaging problems and is based on a primal-dual formulation.
Abstract: We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.

161 citations


Cited by
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this article, the non-local operation computes the response at a position as a weighted sum of the features at all positions, which can be used to capture long-range dependencies.
Abstract: Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method [4] in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our nonlocal models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code will be made available.

8,059 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: It is shown that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting.
Abstract: Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs. Apart from its diverse applications, our approach highlights the inductive bias captured by standard generator network architectures. It also bridges the gap between two very popular families of image restoration methods: learning-based methods using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity.

1,462 citations

Journal ArticleDOI
TL;DR: FFDNet as discussed by the authors proposes a fast and flexible denoising convolutional neural network with a tunable noise level map as the input, which can handle a wide range of noise levels effectively with a single network.
Abstract: Due to the fast inference and good performance, discriminative learning methods have been widely studied in image denoising. However, these methods mostly learn a specific model for each noise level, and require multiple models for denoising images with different noise levels. They also lack flexibility to deal with spatially variant noise, limiting their applications in practical denoising. To address these issues, we present a fast and flexible denoising convolutional neural network, namely FFDNet, with a tunable noise level map as the input. The proposed FFDNet works on downsampled sub-images, achieving a good trade-off between inference speed and denoising performance. In contrast to the existing discriminative denoisers, FFDNet enjoys several desirable properties, including: 1) the ability to handle a wide range of noise levels (i.e., [0, 75]) effectively with a single network; 2) the ability to remove spatially variant noise by specifying a non-uniform noise level map; and 3) faster speed than benchmark BM3D even on CPU without sacrificing denoising performance. Extensive experiments on synthetic and real noisy images are conducted to evaluate FFDNet in comparison with state-of-the-art denoisers. The results show that FFDNet is effective and efficient, making it highly attractive for practical denoising applications.

1,430 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Noise2Void is introduced, a training scheme that allows us to train directly on the body of data to be denoised and can therefore be applied when other methods cannot, and compares favorably to training-free denoising methods.
Abstract: The field of image denoising is currently dominated by discriminative deep learning methods that are trained on pairs of noisy input and clean target images. Recently it has been shown that such methods can also be trained without clean targets. Instead, independent pairs of noisy images can be used, in an approach known as Noise2Noise (N2N). Here, we introduce Noise2Void (N2V), a training scheme that takes this idea one step further. It does not require noisy image pairs, nor clean target images. Consequently, N2V allows us to train directly on the body of data to be denoised and can therefore be applied when other methods cannot. Especially interesting is the application to biomedical image data, where the acquisition of training targets, clean or noisy, is frequently not possible. We compare the performance of N2V to approaches that have either clean target images and/or noisy image pairs available. Intuitively, N2V cannot be expected to outperform methods that have more information available during training. Still, we observe that the denoising performance of Noise2Void drops in moderation and compares favorably to training-free denoising methods.

709 citations