scispace - formally typeset
S

Stan Z. Li

Researcher at Westlake University

Publications -  625
Citations -  49737

Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Computer science. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.

Papers
More filters
Proceedings ArticleDOI

Person re-identification by Local Maximal Occurrence representation and metric learning

TL;DR: This paper proposes an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA), and presents a practical computation method for XQDA.
Journal Article

Learning Face Representation from Scratch

TL;DR: A semi-automatical way to collect face images from Internet is proposed and a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace is built, based on which a 11-layer CNN is used to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF.
Book

Markov Random Field Modeling in Image Analysis

TL;DR: This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimisation.
BookDOI

Handbook of Face Recognition

TL;DR: This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems, as well as offering challenges and future directions.
Book

Markov Random Field Modeling in Computer Vision

TL;DR: This book presents a comprehensive study on the use of MRFs for solving computer vision problems, and covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms.