scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2008
TL;DR: A single near infrared (NIR) image is used as the input, and a mapping from the NIR Tensor space to 3D tensor space, learned by using statistical learning, is used for the shape recovery.
Abstract: In this paper, we propose a new approach for face shape recovery from a single image. A single near infrared (NIR) image is used as the input, and a mapping from the NIR tensor space to 3D tensor space, learned by using statistical learning, is used for the shape recovery. In the learning phase, the two tensor models are constructed for NIR and 3D images respectively, and a canonical correlation analysis (CCA) based multi-variate mapping from NIR to 3D faces is learned from a given training set of NIR-3D face pairs. In the reconstruction phase, given an NIR face image, the depth map is computed directly using the learned mapping with the help of tensor models. Experimental results are provided to evaluate the accuracy and speed of the method. The work provides a practical solution for reliable and fast shape recovery and modeling of 3D objects.

81 citations

Book ChapterDOI
Xuezhi Liang1, Xiaobo Wang1, Zhen Lei1, Shengcai Liao1, Stan Z. Li1 
14 Nov 2017
TL;DR: A novel soft-margin softmax (SM-Softmax) loss to improve the discriminative power of features that can not only adjust the desired continuous soft margin but also be easily optimized by the typical stochastic gradient descent (SGD).
Abstract: In deep classification, the softmax loss (Softmax) is arguably one of the most commonly used components to train deep convolutional neural networks (CNNs). However, such a widely used loss is limited due to its lack of encouraging the discriminability of features. Recently, the large-margin softmax loss (L-Softmax [1]) is proposed to explicitly enhance the feature discrimination, with hard margin and complex forward and backward computation. In this paper, we propose a novel soft-margin softmax (SM-Softmax) loss to improve the discriminative power of features. Specifically, SM-Softamx only modifies the forward of Softmax by introducing a non-negative real number m, without changing the backward. Thus it can not only adjust the desired continuous soft margin but also be easily optimized by the typical stochastic gradient descent (SGD). Experimental results on three benchmark datasets have demonstrated the superiority of our SM-Softmax over the baseline Softmax, the alternative L-Softmax and several state-of-the-art competitors.

81 citations

Proceedings ArticleDOI
01 Oct 2001
TL;DR: A novel method for extracting features for the class of images represented by the positive images provided by subjective RF is proposed, using Principal Component Analysis (PCA) to reduce both noise contained in the original image features and dimensionality of feature spaces.
Abstract: In the past few years, relevance feedback (RF) has been used as an effective solution for content-based image retrieval (CBIR). Although effective, the RF-CBIR framework does not address the issue of feature extraction for dimension reduction and noise reduction. In this paper, we propose a novel method for extracting features for the class of images represented by the positive images provided by subjective RF. Principal Component Analysis (PCA) is used to reduce both noise contained in the original image features and dimensionality of feature spaces. The method increases the retrieval speed and reduces the memory significantly without sacrificing the retrieval accuracy.

79 citations

Book ChapterDOI
TL;DR: The null space of the within-class scatter matrix is found to express most discriminative information for the small sample size problem (SSSP) and a null space-based LDA takes full advantage of the null space while the other methods remove thenull space, which proves to be optimal in performance.
Abstract: The null space of the within-class scatter matrix is found to express most discriminative information for the small sample size problem (SSSP). The null space-based LDA takes full advantage of the null space while the other methods remove the null space. It proves to be optimal in performance. From the theoretical analysis, we present the NLDA algorithm and the most suitable situation for NLDA. Our method is simpler than all other null space approaches, it saves the computational cost and maintains the performance simultaneously. Furthermore, kernel technique is incorporated into discriminant analysis in the null space. Firstly, all samples are mapped to the kernel space through a better kernel function, called Cosine kernel, which is proposed to increase the discriminating capability of the original polynomial kernel function. Secondly, a truncated NLDA is employed. The novel approach only requires one eigenvalue analysis and is also applicable to the large sample size problem. Experiments are carried out on different face data sets to demonstrate the effectiveness of the proposed methods.

78 citations

Book ChapterDOI
01 Jan 2005
TL;DR: Two recognition approaches are presented, i.e. the combination of manifold learning algorithm and linear discriminant analysis (MLA+LDA), and nonlinear auto-associative modeling (NAM) for object recognition.
Abstract: Great amount of data under varying intrinsic features are empirically thought of as high-dimensional nonlinear manifold in the observation space. With respect to different categories, we present two recognition approaches, i.e. the combination of manifold learning algorithm and linear discriminant analysis (MLA+LDA), and nonlinear auto-associative modeling (NAM). For similar object recognition, e.g. face recognition, MLA + LDA is used. Otherwise, NAM is employed for objects from largely different categories. Experimental results on different benchmark databases show the advantages of the proposed approaches.

77 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations