scispace - formally typeset
Search or ask a question
Author

Stan Z. Li

Bio: Stan Z. Li is an academic researcher from Westlake University. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 97, co-authored 532 publications receiving 41793 citations. Previous affiliations of Stan Z. Li include Microsoft & Macau University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The extensive exploration of the curve shape constraints in both the matching and the pose estimation stages are shown to significantly improve the quality of the recognition and pose estimation of 3D space curves.

27 citations

Proceedings ArticleDOI
06 Aug 2012
TL;DR: It is shown that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection and an improved coupled spectral regression approach (ICSR) is proposed which assumes the projections are linearly represented by all samples.
Abstract: Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.

27 citations

Proceedings ArticleDOI
03 Dec 2002
TL;DR: A new boosting algorithm, called FloatBoost, is proposed to construct a strong face-nonface classifier that incorporates the idea of Floating Search into AdaBoost, and yields similar or higher classification accuracy than AdaBoost with a smaller number of weak classifiers.
Abstract: In this paper, a new boosting algorithm, called FloatBoost, is proposed to construct a strong face-nonface classifier. FloatBoost incorporates the idea of Floating Search into AdaBoost, and yields similar or higher classification accuracy than AdaBoost with a smaller number of weak classifiers. We also present a novel framework for fast multi-view face detection. A detector-pyramid architecture is designed to quickly discard a vast number of non-face sub-windows and hence perform multi-view face detection efficiently. This results in the first real-time multi-view face detection system which runs at 5 frames per second for 320x240 image sequence.

26 citations

Book ChapterDOI
01 Jan 2009
TL;DR: The notion of remote biometrics or biometric at a distance is today of paramount importance to provide a secure mean for user-friendly identification and surveillance.
Abstract: The notion of remote biometrics or biometrics at a distance is today of paramount importance to provide a secure mean for user-friendly identification and surveillance.

26 citations

Proceedings ArticleDOI
17 Oct 2003
TL;DR: A Bayesian network based multimodal fusion method for robust and real-time face tracking with a prior of second order system dynamics, and the likelihood cues from color, edge and face appearance is presented.
Abstract: We present a Bayesian network based multimodal fusion method for robust and real-time face tracking. The Bayesian network integrates a prior of second order system dynamics, and the likelihood cues from color, edge and face appearance. While different modalities have different confidence scales, we encode the environmental factors related to the confidences of modalities into the Bayesian network, and develop a Fisher discriminant analysis method for learning optimal fusion. The face tracker may track multiple faces under different poses. It is made up of two stages. First hypotheses are efficiently generated using a coarse-to-fine strategy; then multiple modalities are integrated in the Bayesian network to evaluate the posterior of each hypothesis. The hypothesis that maximizes a posterior (MAP) is selected as the estimate of the object state. Experimental results demonstrate the robustness and real-time performance of our face tracking approach.

26 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations